问题.
1.掌握旋转的有关概念及基本性质.
探究新知
知识点 1
旋转的概念
【观察】观察下列图形的运动,它有什么特点?
O
45°
B
A
探究新知
【思考】怎样
来定义这种图
形变换?
把时针当成一个图形,那么它可以绕着中心
固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时
120°
针转动了______度.
探究新知
(3)△BPQ是什么三角形?
解:(1)旋转中心是点B.
(2)因为△ABC为等边三角形,当边AB旋转到边BC的位置
时,正好转过了60°,所以旋转角的度数是60°.
(3)BP=BQ,而旋转角又等于60°,所以∠PBQ=60°,这样
△BPQ就是一个等边三角形.
探究新知
【想一想】图形在旋转时,旋转的方向有几种?
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCED≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.
将△ABP旋转后能与△CBQ重合.
(1)旋转中心是哪一点?
(2)旋转角是多少度?
(3)△BPQ是什么三角形?
分析: (1)根据对应点到旋转中心的距离相等来确定旋转中
心的位置.(2)对应点与旋转中心连线的夹角都等于旋转角.(3)
由旋转角和对应边的关系可以得到答案.
探究新知
(1)旋转中心是哪一点?
(2)旋转角是多少度?
∴∠BE′C=∠BE′E+∠EE′C=135°.