D. 30π
答案: B
● (4)台体的表面积 ● ①台体的侧面展开图
台体 侧面展开图
棱台 由若干个梯形拼接而成, 如图(5)
圆台
扇环, 两弧长分别等于上、下底面圆周 长, 母线长等于大扇形的半径与小扇形 的半径之差, 如图(6)
②台体的表面积公式
台体的表面积S表=S侧+S上底+S下底. 特别地, 圆台的上、下底面半径分别为r′、r, 母线长 为l, 则侧面积S侧=_π_(_r_+__r′__)_l ____, 表面积S 表=___π_(_r_2+__r_′__2+__r_l+__r_′__l)_________ .
352 A. 3
cm3
320 B. 3
cm3
224 C. 3cm3Βιβλιοθήκη 160 D. 3cm3
【解析】 此几何体为正四棱柱与正四棱台的
组合体, 而 V 正四棱柱=4×4×2=32(cm3),
V 正四棱台=13(82+42+ 82×42)×2=2324(cm3),
所以 V=32+2324=3320 (cm3).
(2)柱体的表面积 ①柱体的侧面展开图
柱体 侧面展开图 棱柱 平行四边形, 一边是棱柱的侧棱, 另一边
等于棱柱的底面周长, 如图(1) 圆柱 矩形, 一边是圆柱的母线, 另一边等于圆
柱的底面周长, 如图(2)
②柱体的表面积公式 S表=S侧+2S底 特别地, 若圆柱的底面半径为r, 母线长为l, 则 圆柱的侧面积S侧=___2_π_rl____ , 表面积 S表=2πr(r+l).
做一做 1.圆柱OO′的底面直径为4, 母线长为6, 则 该圆柱的侧面积为_____, 表面积为_____. 答案: 24π 32π
● (3)锥体的表面积 ● ①锥体的侧面展开图