位置与坐标复习教学案
- 格式:doc
- 大小:45.00 KB
- 文档页数:3
基础地理教案:地理位置与坐标的认识地理是一门研究地球表层的学科,它包含了许多的知识和概念。
其中一个重要的概念就是地理位置与坐标。
学生在初中地理课程中将接触到地理位置与坐标的认识。
本教案将介绍基础的地理位置与坐标知识,并以互动性强的活动方式来促进学生对这个概念的理解。
一、地理位置与坐标简介1. 地理位置:指一个点或者一个物体在地球表面上所处的相对或者绝对位置。
2. 坐标系统:用于描述和定位点或者物体位置的系统,常见的有经纬度和直角坐标系。
二、什么是经纬度?1. 经度:指从东向西测量地球上某一点距离基准经线(通常为本初子午线)东边还是西边的角度。
表示方法为“度°分' 秒",例如116°23'30"。
2. 纬度:指从南向北测量地球上某一点距离赤道(通常为赤道平面)南边还是北边的角度。
表示方法也为“度°分' 秒",例如40°51'14"。
三、如何确定一个点的精确位置?1. 地图:地图是设置比例尺,将地球上的相对距离转化为平面上可比较的尺寸,以便于人们阅读和使用。
典型的地图包括政治地图、物质分布地图等。
2. GPS(全球定位系统):通过接收卫星发出的信号来计算出接收器的精确位置坐标。
四、活动:面向地理位置与坐标活动要求:学生分组合作完成。
1. 活动准备:a) 分发地球仪或者世界地图给每个小组。
b) 准备六张卡片,并在每张卡片上写上一个城市的名称。
c) 准备一些竖直放置和水平放置的参考线(例如绳子、铁丝等)。
2. 活动步骤:a) 小组成员根据给定的城市名称,使用红色笔在世界地图或者地球仪上标记出这些城市。
b) 使用参考线均匀划分纽约和东京之间的区域,形成一个网格。
让学生理解经纬度网格对于确定位置的重要性。
c) 小组成员互相提问并回答有关特定城市和它们之间相对位置的问题。
例如,“哪个城市位于纬度40°N和经度120°E?”d) 每个小组决定一个城市,并使用经纬度告诉其他小组他们的城市的位置。
平面直角坐标系复习教学目标:1.能准确画出平面直角坐标系,由点的位置写出坐标,由点的坐标确定点的位置.掌握特殊位置点的坐标特征,并能用坐标表示平移变换.2.会建立适当的平面直角坐标系,用坐标表示地理位置.3.通过观察、尝试、交流,提高学生数形结合思想,培养学生归纳,整理所学知识和应用数学的意识.教学重点:1.准确确定平面内点的位置和坐标,并能进行综合应用.2.根据实际问题建立适当的平面直角坐标系,并解决实际问题教学难点:1.正确运用坐标特征解决实际问题.2.平面直角坐标系的实际应用.教学方法:启发、讨论、交流.教具准备:多媒体课件.教学过程:一、创设情景,导入新课这是一张某市旅游景点示意图,我们以中心广场所在水平线为横轴,以中心广场所在铅垂线为纵轴建立平面直角坐标系,你们能说出各景点的坐标吗?平面直角坐标系是确定平面内点的坐标的重要工具,用它可以解决很多实际问题,本节课我们大家一起来复习“平面直角坐标系”这一章.(由一个具体实例引出课题,可激发学生的兴趣,创造积极的求知氛围)二、师生互动,构建知识框架1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).2.平面直角坐标系的意义:在平面内,两条具有、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,取向______方向为正方向,竖直的数轴叫做______或_______,取向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限.注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.3.坐标平面内点的坐标的符号特征(填“+”或“-”):4.特殊点的坐标性质:(1)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同;(2)点P(x,y)在第一、三象限的角平分线上,则,P(x,y)在第二、四象限的角平分线上,则;(3)对称点的坐标:点P(a,b)关于x轴对称的点为_________,点P(a,b)关于y轴对称的点为__________;(4)点到两轴的距离的意义:点P(x,y)到x轴的距离为_____,到y轴的距离为____;(5)点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以简单地理解为:左、右平移纵坐标,横坐标,变化规律是,上下平移横坐标,纵坐标,变化规律是.5.用坐标表示地理位置的一般过程:(1);(2);(3).(学生独立思考后与同伴交流各自的答案,学生代表发言,教师纠正学生出现的问题.)评析:复习时以点的坐标特征为主线,把全章知识系统化,条理化,全面化,以便于应用,同时也培养了学生的归纳概括能力.三、运用知识,进行基础训练例1在已给的平面直角坐标系中描出下列各点,并指出各点所在的象限或坐标轴.A(2,3),B(-2,-3),C(4,-3),D(1.5,0),E(-1,5),F(0,-2),G(0,0).练习1:1.点A(-3,4)在第象限,点B(2,-5)在第象限;2.如果点A( a,b)在第四象限,那么点B(b,-a)在第象限;若C(x,y)满足xy=0,则点C一定在;(根据点的坐标特征确定点的位置)(学生通过描点,加深了对平面直角坐标系和坐标的认识,为解决后面的问题作好铺垫)3.已知点P(1+2a,3-a)在x轴上,则点P的坐标为;4.已知线段AB∥y 轴,且A(-2,3),AB =5,那么点B的坐标是;5.若点P( 2a+5,4a-3)在第一、三象限的角平分线上,则点P的坐标为;6.已知点P( a-4,2-3a)在二、四象限的角平分线上,则点P的坐标为;(根据特殊位置点的坐标特征确定点的坐标)7.在平面直角坐标系中,若点P在第二象限,点P到x轴的距离是3,到y轴的距离是2,则点P的坐标是;(根据点的坐标的几何意义确定点的坐标)8.已知点P(2,-3)先向左平移3个单位长度,再向上平移5个单位长度得到点P′,则点P′坐标为;(根据点的平移变换与坐标变化规律确定点的坐标)9.点P(3,-2)关于y 轴对称点的坐标是.(根据对称点坐标的规律确定点的坐标)评析:这些题型不仅对所学知识能进一步理解和应用,而且也提高了学生用数学知识解决问题的能力.例2如图是某市部分平面简图(图中小正方形的边长代表100 m长),请建立适当的平面直角坐标系,并写出各地的坐标.(学生在自己设计的活动中体验怎样建立平面直角坐标系,训练学生数学表达能力,也给学生极大的创造空间,有利于学生个性发展)四、拓宽知识,实现知识迁移师:平面直角坐标系是建立图形和数量关系的桥梁,反映了数学中重要的思想方法——数形结合,下面我们以图形面积为例说明怎样用数形结合思想、转化思想解决有关问题.例3在平面直角坐标系中,△ABC的顶点都在网格点上.(1)平移△ABC,使得点C与坐标原点O重合,请画出平移后的△A′B′C′;(2)写出A、B两点对应点A′、B′的坐标;(3)求△A′B′C′的面积.(学生自己动手画图,作适当的辅助线,将所求图形的面积转化为规则图形的面积差来求,然后同伴相互交流)评析:学生在做数学的过程中掌握了一些数学思想方法,积累了数学解题经验,感受到了数学的应用价值.练习21.在平面直角坐标系中,点P(m2+1,-4)在象限.2.已知点A(a,-5),B(8,b),根据下列要求,确定a,b的值:(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在第一,三象限的平分线上.3.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.4.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(2,1),图书馆位置坐标为B(﹣1,﹣2),解答以下问题:(1)在图中试找出坐标系的原点,并建立直角坐标系;(2)若体育馆位置坐标为C(1,﹣3),请在坐标系中标出体育馆的位置;(3)顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.五、师生小结,概括本章内容通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会.(通过学生自己总结,加强学生对复习课的认识和学习方法的掌握)六、布置作业,拓展思维空间1.书本P84第1,2,4题;2.请你绘制一幅学校平面分布图,并用坐标表示.(强化用坐标表示地理位置的实际应用).。
位置与坐标教案一、教学目标1. 知识与能力目标:(1)正确理解位置和坐标的概念;(2)掌握描述位置和坐标的方式;(3)能够在平面直角坐标系中标出给定点的位置。
2. 过程与方法目标:(1)通过观察、实验、讨论等方式培养学生的观察力和思维能力;(2)利用学生自主探究的方式引导学生主动参与学习。
3. 情感、态度与价值观目标:(1)培养学生积极参与课堂活动的态度;(2)培养学生乐于观察与探究的学习态度。
二、教学重点和难点1. 教学重点:位置和坐标的概念、位置和坐标的描述方式。
2. 教学难点:能够在平面直角坐标系中标出给定点的位置。
三、教学过程1. 导入新课使用多媒体工具展示图片,让学生观察图片中的物体的位置,并引导学生回答相关问题。
(1)图片上的物体有哪些?(2)这些物体的位置如何描述?2. 探究位置和坐标的概念引导学生进行观察实验,比如让学生观察教室里各个物体的位置,并让学生反思它们的位置是如何描述的。
引导学生总结位置的描述方式,并概括出位置的概念。
引导学生进行对话,让学生思考位置和坐标的关系。
3. 学习位置的描述方式展示图片,让学生观察图片中的物体的位置,并引导学生描述出物体的位置。
让学生交流各自描述的方式,并进行汇总总结。
使用平面直角坐标系的方法,引导学生描述出物体的位置,并进行巩固练习。
4. 深化学习让学生找出教室中的几个固定点,比如(0,0)、(1,0)、(0,1),并通过引导让学生描述其他物体相对于这些固定点的位置。
通过练习巩固学习成果,让学生能够准确描述出物体的位置。
5. 拓展思考通过展示不同的地图,让学生从地图中找出自己感兴趣的地点,并描述出这些地点的位置。
学生之间进行分享讨论,让学生了解到不同位置的特点。
四、教学反思通过本节课的教学,学生能够正确理解位置和坐标的概念,并能够准确描述出物体的位置。
教师在课堂上采用了多媒体工具,结合实际情境进行教学,使学生能够积极参与学习。
通过观察实验、讨论等方式,培养了学生的观察力和思维能力。
位置与坐标讲课教案教案标题:位置与坐标讲课教案教学目标:1. 理解位置和坐标的概念。
2. 掌握在平面直角坐标系中确定点的方法。
3. 能够在平面直角坐标系中描述和表示简单的图形。
教学内容:1. 位置和坐标的概念介绍。
2. 平面直角坐标系的构建和表示方法。
3. 在平面直角坐标系中确定点的方法。
4. 利用平面直角坐标系描述和表示简单的图形。
教学步骤:引入活动:1. 引入位置和坐标的概念,通过实际生活中的例子解释它们的意义和重要性。
教学活动:2. 介绍平面直角坐标系的构建和表示方法,包括x轴、y轴、原点等基本概念。
3. 解释如何在平面直角坐标系中确定点的方法,包括横坐标和纵坐标的确定。
4. 利用实例演示如何在平面直角坐标系中描述和表示简单的图形,如线段、直角三角形等。
练习活动:5. 给学生分发练习题,让他们根据给定的坐标在平面直角坐标系中确定点,并描述和表示简单的图形。
6. 学生互相交换练习题,互相检查答案,并进行讨论。
巩固活动:7. 给学生提供更复杂的图形,要求他们在平面直角坐标系中描述和表示。
8. 学生展示他们的作品,并互相评价和提出改进建议。
总结活动:9. 总结本节课学到的知识点,强调位置和坐标的重要性,并鼓励学生在实际生活中应用所学的知识。
教学资源:1. 平面直角坐标系的示意图。
2. 练习题和答案。
评估方法:1. 教师观察学生在课堂上的参与度和理解程度。
2. 练习题的完成情况和准确性。
拓展活动:1. 鼓励学生在实际生活中观察和记录位置和坐标的应用,如地图、建筑物等。
2. 提供更多复杂的图形让学生练习在平面直角坐标系中描述和表示。
注:以上教案仅为示例,具体教案的撰写应根据教学内容、教学目标和学生的实际情况进行调整和完善。
第三章位置与坐标1确定位置【学习目标】1.知道在平面内确定一个物体的位置至少需要两个数据.2.会用两个量表示平面内一个点的位置.【学习重点】掌握平面内确定物体位置的两种方法.【学习难点】在现实情境中感受确定物体位置的多种方法.一、情景导入生成问题在日常生活中,我们常常会遇到;(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“3排6座”与“6排3座”中的“6”的含义相同吗?上面的问题你能解决吗?你能举出生活中利用数据表示位置的例子吗?【说明】用学生比较熟悉的事例引入,容易引起学生的注意,唤起全体学生的学习欲望,使他们很快融入到学习中.二、自学互研生成能力知识模块一行列定位法先阅读教材第54页引言部分和“议一议”的内容,然后解答下面的问题:思考:(1)在电影院内,确定一个座位一般需要几个数据?(2)在生活中,确定物体的位置还有其他方法吗?与同伴进行交流.知识模块二极坐标定位法(方位角法)自学自研教材第54页和第55页的例题及其解答过程.【说明】让学生明确确定一个物体或点的具体位置需要两个数据,从而找到表示平面内一个确定位置的方法.知识模块三经纬定位法和区域定位法1.自学自研教材第55页“做一做”和“议一议”的内容.【说明】通过给出的数据找到对应点的位置与给出物体所在的位置如何来描述相结合,让学生体会它们之间的相互转化,加深对知识的理解.2.议一议:在平面内,确定一个物体的位置一般需要几个数据:【说明】经过上面的学习,学生很容易回答问题,能对所学知识进行提炼和归纳.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一行列定位法知识模块二极坐标定位法(方位角法)知识模块三经纬定位法和区域定位法四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________2平面直角坐标系第1课时平面直角坐标系【学习目标】1.理解平面直角坐标系的相关概念,并能正确画出平面直角坐标系.2.掌握坐标的概念,能在一个平面直角坐标系内由点的位置写出坐标.【学习重点】在坐标系内正确写出点的坐标.【学习难点】象限及其坐标特点.一、情景导入生成问题我们知道:数轴上的一个点可以用一个数来表示,这个数就叫做这个点的坐标.你能采用类似的办法解决下面的问题吗?问题见教材第58页“做一做”上面的内容.【说明】从学生身边发生的事情为例出发,激发他们的学习兴趣,经历体验解决问题的过程.二、自学互研生成能力知识模块一平面内点的表示方法自学自研教材第58页“做一做”的内容,然后与同伴进行交流.【说明】让学生初步掌握已知平面内点的坐标怎样描出这个点的方法和已知平面内的点怎样找到这个点的坐标的方法,经历这样相反的两个过程加深了对知识的理解.知识模块二平面直角坐标系的组成先阅读教材第59页例1上面的内容,然后完成下面的问题.究竟怎样确定平面内一个点的位置呢?这就需要利用平面直角坐标系.(1)什么是平面直角坐标?它由什么组成?各部分的名称是什么?(2)什么叫横坐标、纵坐标?如何来表示一个点的坐标?(3)平面直角坐标系分成哪几个部分?各部分的名称是什么?它们点的坐标有什么特征?知识模块三直角坐标系中点与实数对之间一一对应自学自研教材第60页“做一做”的内容,若有困难与同伴进行交流.【说明】让学生经历在平面直角坐标系内描点的过程,深切体会到平面直角坐标系内的点与有序实数对之间的对应关系,加深了对知识的理解与运用.【归纳结论】在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一平面内点的表示方法知识模块二平面直角坐标系的组成知识模块三直角坐标系中点与实数对之间一一对应四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________第2课时建立适当的平面直角坐标系【学习目标】1.学会根据实际情况,建立适当的平面直角坐标系.2.体会同一图形,可以根据不同需要,建立不同的直角坐标系.【学习重点】建立适当的坐标系表示点的位置.【学习难点】建立适当的坐标系.一、情景导入生成问题前面我们学习了如何在平面直角坐标系内根据位置找点的坐标和根据坐标来找点的位置.利用这个知识,你能解决下面的问题吗?问题:教材第62页例2.【说明】通过学生实际操作,既对上节课所学的知识进行了巩固,又通过观察得出平行于坐标轴点的坐标特征.为这一节课的学习作好了充分的准备.二、自学互研生成能力知识模块一坐标轴及各个象限点的坐标特点自学自研教材第63页的“议一议”和“做一做”的内容,先独立完成,然后再与同伴交流.【说明】学生利用点的坐标总结归纳坐标轴上及各个象限点的坐标特征,使知识体系化,运用方便化.知识模块二建立适当的平面直角坐标系1.教材第65页例3.议论:除了上面的方法外,你还可以怎样建立直角坐标系?【说明】学生通过讨论、交流,体验建立坐标系的位置不同,所得的结果并不完全一样.当然,可以根据实际情况力求使解题简单化.2.教师引导学生完成教材第65页例4.议论:教材第65页“议一议”.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一坐标轴及各个象限点的坐标特点知识模块二建立适当的平面直角坐标系四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3轴对称与坐标变化【学习目标】1.会由一点求关于坐标轴对称的点的坐标.2.掌握两点关于坐标轴对称的坐标规律,并能利用这个规律在平面坐标系中作出一个图形的轴对称图形.【学习重点】会由一点求关于坐标轴对称的点的坐标.【学习难点】找两点关于坐标轴对称的坐标规律.一、情景导入生成问题教材第68页例题上方的内容.【说明】学生通过观察和实际操作对关于坐标轴对称点的坐标特点有个初步的认识.利用数形结合帮助他们进一步理解这一规律.二、自学互研生成能力知识模块关于坐标轴对称点的坐标特点1.前面,我们已经对关于坐标轴对称点之间的关系有了一定的了解,利用这个关系,请看例题并思考.例:教材第68页例题.【说明】一方面,通过学生描点对以前所学知识加以巩固;另一方面,让学生经历纵坐标不变,横坐标乘-1点的坐标变化形成的规律特征,印象深刻.2.做一做:教材第69页“做一做”.【说明】相反的,当上面的各个顶点的横坐标不变,纵坐标乘-1所形成的规律特征让学生形成鲜明的对比,有助于学生理解与记忆.【归纳结论】 关于x 轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y 轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 关于坐标轴对称点的坐标特点四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握平面直角坐标系的概念及组成,学会建立平面直角坐标系以及利用轴对称的坐标规律解决有关问题.2.通过梳理本章知识点,充分利用平面直角坐标系与点的坐标之间一一对应关系,使数与形的相互转化得以体现,加深了对知识的理解.【学习重点】平面内点的坐标的表示方法及求法,能建立适当的平面直角坐标系来描述点所处的位置以及利用轴对称的坐标规律解决实际问题.【学习难点】建立适当的平面直角坐标系的优化方案和利用轴对称的坐标规律解决问题.一、情景导入 生成问题引导学生回顾本章知识点,展示本章知识结构图,让学生对本章所学知识有个系统地了解.教学时,可以边回顾边建立结构图.位置与坐标⎩⎪⎨⎪⎧确定平面内点的位置→有序实数对→建立平面直角坐标系轴对称的坐标变化⎩⎪⎨⎪⎧关于x 轴对称的坐标特点关于y 轴对称的坐标特点二、自学互研 生成能力知识模块一 知识清单 加深理解1.平面直角坐标系与点的坐标(1)一、三象限角平分线上的点横、纵坐标同号;二、四象限角平分线上的点横、纵坐标异号,但他们到两坐标轴的距离都相等,注意有时要考虑到这两种情况的存在.(2)点的横坐标与该点到y 轴的距离有关,点的纵坐标与该点到x 轴的距离有关.不能理解为相反的意思.同时点的横、纵坐标的值可正可负,而距离只可能为非负数.2.在坐标系中求几何图形的面积在坐标系中求图形的面积一般从两个方面去把握:(1)通常向坐标轴作垂线,运用“割”或“补”的方法将要求的图形转化为一些特殊的图形,去间接计算面积;(2)需要将已知点的坐标转化为线段的长度,以备求面积的需要. 知识模块二 典例引路 全面复习例1:等腰梯形的各点坐标为B(-1,0),A(0,2),C(4,0),则点D 的坐标为________.分析:求一个点的坐标,首先求出它到x 轴与y 轴的距离,然后再看它所在的象限,确定其横、纵坐标的符号.解:如图,过点D 作DE ⊥x 轴.∵四边形ABCD 为等腰梯形.∴CE =BO =1.又∵C 点坐标为(4,0),∴OC =4.∴OE =4-1=3.∵AD ∥BC.∴点D 的纵坐标与点A 的纵坐标相等为2.∴D 点的坐标为(3,2).例2:在平面直角坐标系中,A(-3,4),B(-1,2),O 为原点,如图所示.求三角形AOB 的面积.分析:本题考查利用坐标求图形的面积.在平面直角坐标系中求图形的面积,通常将图形面积转化成边在两轴上的图形的面积的和或差,这样可以充分利用点的坐标求出图形中线段的长度.解:过点作AE ⊥y 轴于E ,过点B 作BD ⊥y 轴于D.因为A(-3,4),B(-1,2),所以E(0,4),D(0,2),所以OD =2,BD =1,AE =3,DE =OE -OD =4-2=2,所以S 三角形AOB =S 三角形AOE -S 三角形OBD -S 梯形BDEA =12AE·EO -12BD·OD -12(BD +AE)·DE =12×3×4-12×1×2-12×(1+3)×2=6-1-4=1. 三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 知识清单 加深理解知识模块二 典例引路 全面复习四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
《位置与方向》复习课數學教案設計标题:《位置与方向》复习课数学教案设计一、教学目标:1. 知识与技能:学生能够理解和掌握坐标系中位置与方向的基本概念,熟练运用坐标系确定物体的位置和方向。
2. 过程与方法:通过实例分析和操作练习,让学生体验从实际问题中抽象出数学模型的过程,提高解决实际问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的空间观念和逻辑思维能力。
二、教学内容:1. 坐标系中的位置与方向的基本概念2. 利用坐标系确定物体的位置和方向3. 实际问题的应用三、教学过程:1. 导入新课:教师展示一些生活中的场景,如地图、棋盘等,引导学生思考如何描述这些场景中的位置和方向。
引出坐标系的概念。
2. 新授环节:讲解坐标系中的位置与方向的基本概念,包括横轴、纵轴、原点、象限等,并结合实例进行说明。
然后,指导学生如何利用坐标系确定物体的位置和方向,强调步骤和注意事项。
3. 练习巩固:设计一系列的练习题,让学生在实践中深化理解和应用所学知识。
题目应包括基本概念的理解、简单的计算以及实际问题的应用。
4. 总结反馈:总结本节课的主要知识点,鼓励学生提出自己的疑问和困惑,进行答疑解惑。
同时,对学生的学习情况进行评价和反馈。
四、教学评价:1. 过程性评价:观察学生在课堂上的参与度,记录他们在解决问题过程中的表现,以此了解他们的理解程度和掌握情况。
2. 结果性评价:通过练习题的完成情况,评估学生对知识点的掌握程度和应用能力。
五、教学反思:在教学过程中,要关注学生的反应,及时调整教学策略。
在课后,对教学效果进行反思,总结经验教训,以便改进教学方法,提高教学质量。
2平面直角坐标系第1课时平面直角坐标系的有关概念一、基本目标1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,并能画出平面直角坐标系.2.经历对平面直角坐标系的探讨过程,使学生初步认识平面直角坐标系及其意义.二、重难点目标【教学重点】建立平面直角坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.环节1自学提纲,生成问题【5 min阅读】阅读教材P58~P60的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,分别取向右和向上为数轴的正方向,水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,它们统称坐标轴,它们的公共原点O叫做坐标系原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,右上方的部分叫做第一象限、其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不在任何一个象限内.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.4.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限5.小明建立了如图的直角坐标系,则点“A”的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图,写出下列各点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).2.如图是画在方格纸上的某一小岛的示意图.(1)分别写出点A、C、E、G、M的坐标;(2)(3,6),(7,9),(8,7),(3,3)所代表的地点分别是什么?解:(1)A (2,9)、C (5,8)、E (5,5)、G (7,4)、M (8,1). (2)(3,6),(7,9),(8,7),(3,3)分别代表点B 、D 、F 、H . 活动3 拓展延伸(学生对学)【例2】(1)在如图所示的平面直角坐标系中,描出下列各点:A (-5,0)、B (1,4)、C (3,3)、D (1,0)、E (3,-3)、F (1,-4).(2)依次连结A 、B 、C 、D 、E 、F 、A ,得到什么图形? (3)在平面直角坐标系中,点与实数对之间有何关系?【互动探索】在平面直角坐标系中,如何根据点的坐标找出对应点的位置?在平面直角坐标系中,点与实数对之间有何关系?【解答】(1)如题图所示. (2)轴对称图形.(3)在平面直角坐标系中,点与实数对之间是一一对应的关系.【互动总结】(学生总结,老师点评)在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.平面直角坐标系⎩⎪⎨⎪⎧x 轴y 轴原点2.平面直角坐标系中的点一一对应有序数对请完成本课时对应练习!第2课时平面直角坐标系中点的坐标特征一、基本目标1.知道在坐标轴上的点以及与坐标轴平行的直线上点的坐标的特征.2.结合平面直角坐标系,知道不同象限中点的坐标的特征.二、重难点目标【教学重点】平面直角坐标系中点的坐标特征.【教学难点】会根据点的坐标特征判断点在哪个象限或哪条坐标轴上.环节1自学提纲,生成问题【5 min阅读】阅读教材P62~P63的内容,完成下面练习.【3 min反馈】1.坐标轴上的点的坐标特征:横轴上点的纵坐标为0,纵轴上点的横坐标为0,原点的横纵坐标都为0.2.象限坐标特点:点P(x,y)分别在:第一象限内,则x>0,y>0;第二象限内,则x<0,y >0;第三象限内,则x<0,y<0;第四象限内,则x>0,y<0.3.坐标平面内的下列各点中,在x轴上的是(B)A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)4.如果点B与点C的横坐标相同,纵坐标不同,那么直线BC与y轴的关系为(A) A.平行或重合B.垂直C.相交D.无法判断5.在平面直角坐标系中,点P(2,-3)在(D)A.第一象限B.第二象限C.第三象限D.第四象限环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】在平面直角坐标系中(每个小正方形的边长为1)描出下列各组点,并将各组内的点用线段依次连结起来.①(1,1),(3,1),(1,3),(1,1); ②(-1,3),(-1,5),(-3,3),(-1,3); ③(-5,1),(-3,-1),(-3,1),(-5,1); ④(-1,-1),(1,-1),(-1,-3),(-1,-1). (1)观察所得的图形,你觉得它像什么? (2)求出这四个图形的面积和.【互动探索】(引发学生思考)平面直角坐标系各象限中点的坐标有哪些特征?如何根据点的坐标,在坐标系中找出点的位置?【解答】如题图所示.(1)观察所得的图形,发现它像一个风车.(2)由题意,得S =4×12×2×2=8,故这四个图形的面积和为8.【互动总结】(学生总结,老师点评)纵坐标相同的点所在直线平行(重合)于x 轴;横坐标相同的点所在直线平行(重合)于y 轴.活动2 巩固练习(学生独学)1.在直角坐标系中,描出下列各组点,并将各组内的点用线段依次连结起来. ①(2,0),(12,0),(13,2),(0,3); ②(5,4),(9,5),(11,13),(2,10); ③(6,14),(7,3).观察所得的图形,你觉得它像什么? 解:如图,像一艘帆船.2.观察图形,并回答以下问题:(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC、CE的位置各有什么特点?(3)计算多边形ABCDEF的面积.解:(1)A(-2,0)、B(0,-3)、C(3,-3)、D(4,0)、E(3,3)、F(0,3).(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y轴).(3)S多边形ABCDEF=S△ABF+S长方形BCEF+S△CDE=12×6×2+3×6+12×6×1=6+18+3=27.活动3拓展延伸(学生对学)【例2】已知点P(a-2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【互动探索】在x轴上、y轴上的点的坐标各有什么特征?平行于x轴、y轴的直线上的点的坐标又有什么特征?【解答】(1)因为点P(a-2,2a+8)在x轴上,所以2a+8=0,解得a=-4,故a-2=-4-2=-6,则P(-6,0).(2))因为点P(a-2,2a+8)在y轴上,所以a-2=0,解得a=2,故2a+8=2×2+8=12,则P(0,12).(3)因为点Q的坐标为(1,5),直线PQ∥y轴,所以a-2=1,解得a=3,故2a+8=14,则P(1,14).4)因为点P到x轴、y轴的距离相等,所以a-2=2a+8或a-2+2a+8=0,解得a=-10或a=-2.当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述,点P的坐标为(-12,-12)或(-4,4).(【互动总结】(学生总结,老师点评)横轴上点的纵坐标为0,纵轴上点的横坐标为0.平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.环节3课堂小结,当堂达标(学生总结,老师点评)点P(x,y)的位置点的坐标特征第一象限x>0,y>0第二象限x<0,y>0第三象限x<0,y<0第四象限x>0,y<0x轴上y=0y轴上x=0坐标原点x=0,y=0请完成本课时对应练习!第3课时建立适当的坐标系描述图形的位置一、基本目标1.进一步巩固画平面直角坐标系,在给定的直角坐标系中,会根据点的位置写出它的坐标,会根据点的坐标描出它的位置.2.能在方格纸上建立适当的直角坐标系,描述物体的位置.二、重难点目标【教学重点】根据实际问题建立适当的坐标系,并能写出各点的坐标.【教学难点】能结合具体情境灵活运用多种方式确定物体的位置.环节1自学提纲,生成问题【5 min阅读】阅读教材P65的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参考点为原点,确定坐标轴正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.如图,方格纸上有M、N两点,若以N为原点建立平面直角坐标系,则点M的坐标为(3,4);若以M点为原点建立平面直角坐标系,则点N的坐标为(A)A.(-3,-4) B.(4,0)C.(0,-2) D.(2,0)3.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,等腰梯形ABCD的上底为4,下底为6,高为3,建立适当的平面直角坐标系,并写出各个顶点的坐标.【互动探索】(引发学生思考)等腰梯形是什么特殊四边形?对于此类图形,如何选取原点,怎样建立直角坐标系比较简便?【解答】(答案不唯一)如图,以AB的中点O为原点,分别以AB所在直线和过点O的AB 的中垂线为x轴、y轴建立平面直角坐标系.此时点O的坐标为(0,0),OA=OB=3,点A、B 的坐标分别为A(-3,0)、B(3,0).因为高为3,CD的长为4,则点D、C坐标分别为D(-2,3)、C(2,3).【互动总结】(学生总结,老师点评)根据已知条件建立适当的直角坐标系通常以某已知点为原点,以某些特殊线段所在直线(如高、中线、对称轴)为x轴或y轴,使图形中尽量多的点在坐标轴上.活动2巩固练习(学生独学)1.如图所示,四边形ABCD是边长为6的正方形,请你建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:(答案不唯一)以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).2.如图是某市旅游景点的示意图.试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).活动3课堂小结活动3拓展延伸(学生对学)【例2】如图,在一次部队军事对抗演习中甲方已经找到了乙方坐标为A(2,1)和B(-2,1)的两个警卫营的位置,并且知道乙方的指挥所的位置为(3,3),除此之外不知道其他信息,如何确定乙方的指挥所所处的位置?【互动探索】观察A、B的坐标,有什么特征?由此能否建系确定原点的位置?【解答】连结AB ,作线段AB 的中垂线,记为y 轴,以AB 的中点为起点,以AB 的四分之一为1个单位长度向下作1个单位为坐标原点,过原点作AB 的平行线记为x 轴,建立平面直角坐标系,找到坐标(3,3)即可.如图,点C 所示位置即为乙方的指挥所所处的位置.【互动总结】(学生总结,老师点评)两点的纵坐标相等,横坐标互为相反数时,连结两点所成线段的中垂线即为y 轴所在直线.环节3 课堂小结,当堂达标 (学生总结,老师点评)建立平面直角坐标系的基本思路 ⎩⎪⎨⎪⎧(1)分析条件,选择适当的点作为原点;(2)过原点作两条互相垂直的直线分别作为x 轴和y 轴;(3)确定正方向、单位长度请完成本课时对应练习!。
第三章位置与坐标 1 确定位置教学目标1.明确确定位置的必要性,掌握确定位置的基本方法.2.经历生活中确定位置实例认识过程,培养学生观察问题、解决问题的能力.3.让学生主动地参与观察、操作与活动,感受丰富的现实背景,体验形式多样的确定位置的方式,增强学习的兴趣.重点感受确定物体位置的多种方式与方法.难点能比较灵活地运用不同的方式确定物体的位置.教学用具教学环节二次备课新课导入一、创设情境,引入新课教师出示以下几个情景,并请学生思考它们的共同之处.1.一位居民打电话供电部门“卫星路第8根电线杆的路灯坏了”,维修人员很快修好了路灯.2.地质部门在某地埋下一标志桩,上面写着“北纬44.2°,东经125.7°”.3.某人买了一张6排3号的电影票,很快找到了自己的座位.分析以上情景中,他们都是利用哪些数据找到位置的?课程讲授1.教师出示问题展示生活中确定物体位置的几种常见方法.问题1:如图点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?AB2大道1大道1街2街3街4街5街6街分析、寻找规律,确定路线.图中确定点用前一个数表示街,后一个数表示大道.解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3).根据所学的知识,请同学们观察自己在班级里的位置,思考应该怎样表示.小结:利用有序数对,表示一个确定的位置.问题2:如图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20n mile).对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?解:(1)如图,对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离.(2)距离我方潜艇20n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说,敌舰A在正南方向,距离为20n mile处,敌舰B在北偏东40°的方向,距离为28n mile处;敌舰C在正东方向,距离为20n mile处.小结:利用距离和方位角来确定位置.问题3:(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8.0级强烈地震,震中位于阿坝洲汶川县境内,即北纬31.4°,东经103.6°.在这次地震中有69 142人遇难,17 551人失踪.这是新中国成立以来破坏性最强、波及范围最大的一次地震.地震重创约50万km2的中国大地!你能在图(1)中找到震中的大致位置吗?(2)图(2)是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在的区域?“广州火车站”呢?解:(1)先找出北纬31.4°所在的横线,然后找到东经103.6°所在的竖线,地震的位置在横线和竖线相交的地方.(2)“广州起义烈士陵园”在C4区,“广州火车站”在B3区.小结:类似于有序数对的方法,将平面分成若干个小正方形的方格,利用点所在行与列的位置来确定点的位置.2.议一议.在平面内,确定一个物体的位置一般需要几个数据?(2个)三、巩固练习仿照前面的方法确定位置关系,学生尝试描述位置.1.如图是某城市市区的一部分示意图,对市政府来说:(1)北偏东60°的方向有哪些单位?要想确定单位的位置,还需要哪些数据?(2)火车站与学校分别位于市政府的什么方向?怎样确定它们的位置?2.如图,“马”所处的位置为(2,3).(1)你能表示出“象”的位置吗?(2)写出“马”下一步可以到达的位置.教师提示:可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类.小结师:本节课主要学习了几种常用的表示物体的位置的方法?作业布置57页1.2题板书设计在平面内,确定一个物体的位置一般需要两个数据。
第五章位置与坐标复习教学案
课题:位置与坐标
课型:复习课
课程标准的学习与描述:
1、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。
2、在实际问题中,能建立适当的直角坐标系,描述物体的位置。
学习内容与学情分析:
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
复习目标:
1、了解第五章平面直角坐标系知识结构图;
2、通过基本训练,巩固第五章所学的基本内容;
复习重点和难点:
1、重点:知识结构图和基本训练;
2、难点:基本知识灵活运用;
一、复习回顾(知识要点)
总结本章知识要点
1、确定物体位置方法:行列定位(或有序实数对)、“象限角和距离”定位、区域定位;需要数据:两个
2、(1)四个象限内点坐标符号特点:第一象限:(正,正) 第二象限:(负,正) 第三象限:(负,负) 第四象限:(正,负)
(2)x 轴上点坐标特点:纵坐标为零;y 轴上点坐标特点:横坐标为零
(3)点所在直线平行于x 轴:纵坐标相同;
点所在直线平行于y 轴:横坐标相同;
(4)点(a ,b )到x 轴的距离:b (纵坐标的绝对值)
点(a ,b )到y 轴的距离:a (横坐标的绝对值)
点(a ,b )到原点的距离:2
2b a
(5)关于x 轴对称的两点:横坐标相同,纵坐标相反
关于y 轴对称的两点:横坐标相反,纵坐标相同
关于原点对称的两点:横坐标相反,纵坐标相反
(6)关于x 轴对称的图形:横坐标相同,纵坐标相反(构成图形的所有点)
关于y轴对称的图形:横坐标相反,纵坐标相同(构成图形的所有点)
关于原点对称的图形:横坐标相反,纵坐标相反(构成图形的所有点)(7)第一、三象限角平分线上的点:横、纵坐标相同
第二、四象限角平分线上的点:横、纵坐标相反
3、建立平面直角坐标系:长方形、圆、正三角形、方格纸、棋盘
二、知识点对应练习
(一)基础题
1、点P在第二象限,到x轴的距离为3,到y轴的距离为4,则点P的坐标__________;
2、点P(m+6,m+1)在x轴上,则点P的坐标为__________;
3、已知点P(2,a),Q(b,-1),根据下列条件,求a,b的值。
①P、Q两点关于y轴对称;
②P、Q两点连线平行于y轴;
4、在第一、三象限角平分线上有一点P,它到x轴的距离为2,则P的坐标为
__________;
5、图是一个象棋盘的一部分,若“将”位于点(1,-2),“马”位于点(4,0),则“炮”位于点()
A.(1,-1)
B.(-1,1)
C.(-1,2)
D.(1,-2)
(二)能力题
1、点A(x,0)与B(2,0)距离等于3,则x=________;
2、对于边长为4的正三角形ABC,以BC所在的直线为x轴,以BC中垂线为y 轴,建立直角坐标系,则A的坐标为__________;
3、以A(0,2)为圆心,3为半径的圆与两坐标轴交点坐标为____________________;
4、点P的坐标为(2-a,3a+6),且P到两坐标轴距离相等,则点P的坐标为__________;
(三)提高题
在直角坐标系中,Rt△AOB的位置如图所示,∠B=90º,OA=2,OB=3,求△AOB 的各顶点坐标。
三、课堂检测
已知两点A(4,y)、B(x,-3),经过A、B两点的直线平行于x轴,AB=5,则x=______;y=______。
四、课堂小结
1、了解第五章平面直角坐标系知识结构图;
2、通过基本训练,进一步巩固第五章所学的基本内容;。