硫化矿的造锍熔炼和锍的吹炼
- 格式:ppt
- 大小:345.00 KB
- 文档页数:52
铜冶炼方法综述摘要:目前世界上从硫化矿中提取铜, 85% ~90%是采用火法冶炼,因为该法与湿法冶炼相比,无论是原料的适应性,还是在生产规模、贵、稀金属富集回收方面都有明显的优势。
因此为了降低能耗,减少火法炼铜的环境污染,闪速熔炼、熔池熔炼以及其它熔炼技术都在不断改进和发展。
关键词:铜冶炼火法炼铜熔池熔炼闪烁熔炼1.前言随着环境保护的日益严格,铜冶金工业面临着严峻挑战。
当今世界铜冶金方法主要有火法和湿法两种,其中火法占主导地位。
火法冶金种类较多,目前国际上存在的主要火法炼铜工艺有闪速炉、反射炉、鼓风炉、诺兰达炉、艾萨炉(奥斯麦特炉)、瓦纽可夫炉、三菱炉、特尼恩特炉、电炉、白银炉等十几种冶炼工艺。
大部分工艺存在能力低、成本高、能耗大、污染严重等问题,严重制约着铜冶金工业的发展。
2.火法炼铜火法炼铜主要包括[1]: (1)铜精矿的造锍熔炼;(2)铜锍吹炼成粗铜; (3)粗铜火法精炼; (4)阳极铜电解精炼。
经冶炼产出最终产品-电解铜(阴极铜)。
2.1熔炼2.1.1熔池熔炼在熔池熔炼工艺中,精矿被抛到熔体的表面或者被喷入熔体内,通常向熔池中喷入氧气和氮气使熔池发生剧烈搅拌,精矿颗粒被液体包围迅速融化,因此,吹炼反应能够产生维持熔炼作业所需的大部分热量,使含有氧气的气泡和包裹硫化铜/铁的溶液发生质量传递。
澳斯麦特熔炼法/艾萨熔炼法是20世纪70年代由澳大利亚联邦科学工业研究组织矿业工业部J.M.Floyd博士领导的研究小组发明的。
随后芒特#艾萨矿物控股有限公司(简称MIM)和澳大利亚国家科学院(简称CSIRO)在20世纪80年代联合开发了艾萨熔炼法,MIM于1987年在铜冶炼厂建起了一座示范工厂, 1996年MIM开发了Enterprise和ErnentHenry矿,铜精矿产量增加,于是决定扩建铜冶炼厂, 1997年经两次提高给料率和提高氧浓度试验,现熔炼能力已扩建到250kt/a铜。
斯特莱特工业公司其第一台艾萨熔炼炉于1996年在印度TamilNadu 的Tuticorin新建冶炼厂投产,现在铜的年产量超过150kt。
铜冶金主要步骤:造锍熔炼、铜硫吹炼、火法精炼、电解精炼。
1.何谓造锍熔炼?造锍熔炼的目的是什么?定义:在1150-1250℃的高温下,是硫化铜精矿和溶剂在熔炼炉进行熔炼,炉料中的铜、硫与硫化亚铁形成液态的铜硫。
目的:将铜精矿中铜及其他有价金属(Ni、Co、Pb、Zn和贵金属)富集于冰铜中从而达到与脉石、部分硫铁的分离。
2.造锍熔炼时铜在渣中的损失有哪几种形式?并说明原因及降低渣含铜的可采取的措施。
损失形式:机械夹带、溶解两种形式。
原因:机械夹带损失是由于细颗粒冰铜未能沉降到锍层而夹带于炉渣中而引起的损失;溶解损失是由于铜的硫化物(Cu2S)及氧化物(Cu2O)溶于FeO炉渣中造成的损失,又分别为物理损失、化学损失。
措施:为降低渣含铜,实践中采取的主要措施是控制冰铜品位不要太高,渣中要有足够的二氧化硅以及良好的沉清条件和足够的沉清时间。
3.造锍熔炼过程中Fe3O4有何危害?生产实践中采用哪些有效措施抑制Fe3O4的形成?危害:1、Fe3O4的熔点高在渣中以Fe-O复杂离子状态存在。
当其量较多时,会使炉渣熔点升高,粘度增大,比重增大,恶化了渣与锍的沉清分离。
2、当熔体温度下降时,Fe3O4会析出沉于炉底及某些部位形成炉结,还会在冰铜与炉渣界面上形成一层粘渣隔膜层,危害正常操作。
有效措施:1.尽量提高熔炼温度;2.适当增加炉渣中SiO2含量;3.降低冰铜品位,控制适当的冰铜品位, 以保持足够的FeS量;4.创造Fe3O4与FeS和SiO2的良好接触条件。
3Fe3O4+FeS=10FeO+SO24.在吹炼过程中Fe3O4有何危害?怎样抑制其形成?危害:使炉渣熔点升高、粘度密度增大,转炉渣中Fe3O4含量较高时,会导致渣含铜显著增高,喷溅严重,风口操作困难。
在转炉渣回炉处理的情况下,还会给熔炼过程带来诸多问题。
抑制其形成:适当提高吹炼温度,勤放渣。
5.冰铜吹炼的目的?冰铜吹炼分哪两个阶段?并写出各阶段的主要方程式。
《有色冶金概论》复习题4、铜的冶炼方法及工艺流程答:有火法和湿法两大类;火法炼铜基本流程包括造锍熔炼、锍的吹炼、粗铜火法精炼或阳极铜电解精炼;湿法炼铜基本流程包括浸出、萃取。
反萃、电积。
5、硫化铜精矿造锍熔炼的基本原理及两个过程的主要反应答:利用铜对硫的亲和力大于铁和一些杂质金属,而铁对氧的亲和力大于铜的特性,在高温及控制氧化气氛条件下,使铁等杂质金属逐步氧化后进入炉渣或烟尘而被除去,而金属铜则富集在各种中间产物中,并逐步得到提纯。
主要包括两个造渣和造锍两个过程 主要反应: 2FeS(l)+3O 2(g) =2FeO(g)+2SO 2(g);2FeO(g)+SiO 2(s)= 2FeO ·SiO 2(l);xFeS(l)+yCu 2S(l)= yCu 2S ·xFeS(l)6、硫化铜精矿造锍熔炼的目的及必须遵循的两个原则答:(1)造流熔炼的目的:①使炉料中的铜尽可能全部进入冰铜,同时使炉料中的氧化物和氧化产生的铁氧化物形成炉渣;②使冰铜与炉渣分离。
(2)火法炼铜必须遵循两个原则:①必须使炉料有相当数量的硫来形成冰铜;②炉渣含二氧化硅接近饱和,以便冰铜和炉渣不致混溶7、铜锍(冰铜)的吹炼的任务及实质是什么?答:任务是将铜锍(冰铜)吹炼成含铜98.5%-99.5%的粗铜;实质是在一定压力下将空气送到液体冰铜中,利用空气中的氧将冰铜中的铁和硫几乎全部除去,并除去部分其它杂质:FeS 氧化变成FeO 与加入的石英熔剂造渣;而Cu 2S 则部分经过氧化,并与剩下的Cu 2S 相互反应变成粗铜。
8、铜锍(冰铜)的吹炼过程为分为哪两个两个周期?各周期的主要反应是什么? 答:造渣期:2FeS+3O 2=2FeO+2SO 2;2FeO+SiO 2= 2FeO ·SiO 2;相加得总反应为2FeS+3O 2+SiO 2= 2FeO ·SiO 2+2SO 2。
造铜期:2Cu 2S+3O 2=2CuO+2SO 2;Cu 2S+2 Cu 2O=6Cu+ SO 2两式相加得总反应:Cu 2S+O 2=2Cu+ SO 29、粗铜火法精炼的目的及原理是什么?粗铜火法精炼分为哪两个过程?答:目的:部分除去粗铜中对氧亲和力较大的杂质;为电解精炼提供合乎要求的阳极铜,并浇铸成为表面平整、厚度均匀、致密的阳极板;以保证电解铜的质量和降低电解精炼的成本。
造锍熔炼的基本原理(一)造锍熔炼的基本原理什么是造锍熔炼?造锍熔炼是一种将金属矿石转化为金属锍的冶金过程。
锍是金属矿石在高温下部分熔化的产物,其中含有金属和非金属成分。
通过进一步处理,金属锍可以被提纯并用于制造各种金属制品。
造锍熔炼的基本步骤1.矿石破碎:首先,将金属矿石进行破碎,以增加其表面积和接触面,便于后续处理。
2.矿石浮选:将破碎后的矿石放入浮选机中,通过气泡吸附的方式分离金属矿石和非金属矿物。
在浮选过程中,利用矿石表面的物化性质,使金属矿石浮起来,而非金属矿物沉入底部。
3.锍矿化:经过浮选的金属矿石被送入熔炼炉,并与熔剂(通常是氧化剂和还原剂的混合物)一起加热。
在高温下,金属矿石开始熔化,并与熔剂中的其他化学物质发生反应。
4.分离:在熔炼过程中,金属和非金属成分会发生相互作用,生成金属锍和熔渣。
通过浮力和密度的差异,可以将金属锍与熔渣分离。
5.精炼:分离得到的金属锍可能含有杂质,需要进行精炼。
精炼过程中,通过加入化学剂或调节温度、压力等参数,可以进一步纯化金属锍。
6.冷却和固化:经过精炼的金属锍被冷却成块状,并固化为有固定形状的金属。
造锍熔炼的原理解析1.浮选原理:浮选是根据矿物表面与气泡的相互作用来实现分离的。
通过给矿浆注入含有诸如气体或化学药品的液体,使气泡产生并吸附在目标矿物表面,从而改变其浮力或附着特性。
2.熔渣分离原理:熔渣分离是利用熔渣与金属锍的密度和浮力差异来实现的。
通过控制熔渣的成分和温度,可以调节其物理性质,使得熔渣具有更高的密度,从而下沉或被分离出来。
3.精炼原理:精炼是通过控制反应条件和添加特定的化学剂来消除金属锍中的杂质。
常用的精炼方法包括化学精炼、电解精炼、熔盐精炼等。
造锍熔炼的应用领域造锍熔炼广泛应用于金属冶金工业,包括以下领域:•铁矿石冶金:将铁矿石熔炼成熔铁,用于生产钢材或其他铁制品。
•铜冶金:将铜矿石熔炼成熔铜,用于制造电线、管道等。
•铝冶金:将铝矿石熔炼成熔铝,用于汽车制造、建筑等行业。