半导体中杂质与缺陷表现
- 格式:ppt
- 大小:572.00 KB
- 文档页数:53
半导体缺陷类型
半导体缺陷类型主要包括以下几种:
1.位错:位错是晶体材料中常见的缺陷,它会导致材料的力学性能和电学性能受到影响。
2.杂质条纹:杂质条纹是半导体材料中常见的缺陷,它是由杂质原子在晶体中形成的周期性排列。
3.凹坑:凹坑是晶体表面上的一种缺陷,它通常是由于表面重构或离子注入引起的。
4.空洞:空洞是晶体中一种常见的缺陷,它通常是由于热处理或离子注入过程中引起的。
5.孪晶:孪晶是晶体中一种特殊的缺陷,它是由两个或多个晶体部分以特定的方式排列而形成的。
6.嵌晶:嵌晶是另一种晶体缺陷,它通常是由于杂质原子或结构单元在晶体中形成的。
7.化学抛光:化学抛光是一种通过化学反应来改善晶体表面的方法,但它有时会导致表面缺陷的产生。
8.多晶:多晶是一种特殊的晶体结构,它由多个取向不同的晶粒组成,这使得它的物理和化学性质不同于单晶。
以上只是半导体缺陷的一部分类型,具体类型和产生原因可能会因材料种类和制造过程的不同而有所差异。
半导体材料中的缺陷与杂质控制技术半导体材料是现代电子器件制造中的关键材料之一。
为了保证半导体器件的性能和可靠性,需对半导体材料中的缺陷和杂质进行控制。
本文将重点讨论半导体材料中的缺陷与杂质控制技术。
一、半导体材料的缺陷类型半导体材料中常见的缺陷类型包括点缺陷、线缺陷和面缺陷。
点缺陷指的是材料中的单个原子或多个原子的缺失或占据,如空位和间隙原子;线缺陷是由材料中原子排列的缺陷引起的,如位错和脆性晶粒界;面缺陷则是材料表面或晶界处的缺陷,如二维氧化物缺陷和界面能带不平整。
二、缺陷对半导体性能的影响缺陷对半导体器件的性能和可靠性具有重要影响。
例如,点缺陷会降低半导体的载流子浓度,并影响电子迁移率和电阻;线缺陷会导致晶格畸变、局部应变和电子复合增加,降低载流子迁移率和器件寿命;面缺陷则会导致界面态和能带弯曲,进一步影响器件的电学性能。
三、缺陷与杂质控制技术为了控制半导体材料中的缺陷与杂质,需要实施一系列控制技术。
以下是几种常用的控制技术:1. 生长技术半导体晶体的生长是控制材料缺陷和杂质的重要方法。
例如,通过外延生长技术可以在晶体中控制点缺陷和线缺陷的形成;通过气相沉积技术可以控制杂质的浓度和分布。
2. 退火技术退火技术可以通过热处理来消除或减少材料中的缺陷和杂质。
例如,热退火可以使点缺陷移动和缩减;退火还可以使线缺陷部分消失或接近消失。
3. 加工工艺加工工艺可以通过控制材料的加工条件和方法来减少缺陷的形成。
例如,减小晶圆加工过程中的机械应力和温度梯度,可以减少缺陷的产生。
4. 杂质掺杂技术杂质掺杂技术可以通过控制材料中的杂质浓度和种类来改变材料的性能和控制缺陷。
例如,控制掺杂过程中的杂质浓度和扩散温度,可以有效控制杂质的分布和缺陷的形成。
5. 表面修饰技术表面修饰技术可以通过改变材料表面的能带结构来控制缺陷和杂质。
例如,通过表面处理或修饰来改变半导体材料的表面状态和化学反应性,可以减少表面缺陷和界面态的形成。
第二章 半导体中杂质和缺陷能级 引言 1.实际半导体和理想半导体的区别 理想半导体 实际半导体 原子不是静止在具有严格周期性的晶格的格点上,而在其平衡位置附近振动 原子静止在具有严格周期性的晶格的格点上 半导体不是纯净的,含有若干杂质半导体是纯净的,不含杂质 晶格结构不是完整的,含若干缺陷晶格结构是完整的,不含缺陷 2.杂质的种类根据杂质能级在禁带中的位置将杂质分为两种浅能级杂质:能级接近导电底Ec 或价带顶Ev ;深能级杂质:能级远离导带底Ec 或价带顶Ev ;3.缺陷的种类点缺陷,如空位、间隙原子;线缺陷,如位错;面缺陷,如层错、多晶体中的晶粒间界等§2.1硅、锗晶体中的杂质能级一、杂质与杂质能级杂质:半导体中存在的与本体元素不同的其它元素。
杂质出现在半导体中时,产生的附加势场使严格的周期性势场遭到破坏。
单位体积中的杂质原子数称为杂质浓度。
杂质能级:杂质在禁带中引入的能级。
二、替位式杂质、间隙式杂质杂质原子进入半导体后,有两种方式存在:1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,形成该种杂质时,要求其杂质原子比晶格原子小;2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,形成该种杂质时,要求其原子的大小与被取代的晶格原子的大小比较接近,而且二者的价电子壳层结构也比较接近。
三、施主杂质、施主能级(举例Si 中掺P)如图所示,一个磷原子占据了硅原子的位置。
磷原子有5个价电子,其中4个价电子与周围的4个硅原子形成共价键,还剩余一个价电子。
同时,磷原子所在处也多余一个正电荷+q ,称这个正电荷为正电中心磷离子(P +)。
所以磷原子替代硅原子后,其效果是形成一个正电中心P +和一个多余的价电子。
这个多余的价电子就束缚在正电中心P +的周围。
但是,这种束缚作用比共价键的束缚作用弱得多,只要有很少间隙式杂质替位式杂质硅中的施主杂质的能量就可以使它挣脱束缚,成为导电电子在晶格中自由运动,这是磷原子就成为少了一个价电子的磷离子(P +),它是一个不能移动的正电中心。