第二章室内声学原理
- 格式:pdf
- 大小:6.07 MB
- 文档页数:40
室内声学基础第一章声音的基本性质一、声音的产生与传播声音是人耳通过听觉神经对空气振动的主观感受。
声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。
这些振动的物体称之为声源。
声源发声后,必须经过一定的介质才能向外传播。
这种介质可以是气体,也可以是液体和固体。
在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。
但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。
介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。
例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。
这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。
可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。
扬声器纸盒就相当于上图中的活塞。
在空气中,声音就是振动在空气中的传播,我们称这为声波。
声波可以在气体、固体、液体中传播,但不能在真空中传播。
二、声波的频率、波长与速度当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。
质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。
质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即:f=1/T介质质点振动的频率即声源振动的频率。
频率决定了声音的音调。
高频声音是高音调,低频声音是低音调。
人耳能够听到的声波的频率范围约在20—20000Hz之间。
低于20Hz的声波称为次声波,高于20000Hz的称为超声波。
次声波与超声波都不能使人产生听感觉。
声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。
或者说,波长是声波在每一次完全振动周期中所传播的距离。
声波在弹性介质中传播的速度称为声速,记为v,单位是米/秒(m/s)。
声速不是介质质点振动的速度,而是质点振动状态的传播速度。
室内声学原理一.室内声场:当一个声源在室内发声时,声波由声源到室内各接收点形成了复杂声场。
对于任一接收点,其所接收到的声音可以简单地看做由三部分组成,即直达声、近次反射声及混响声。
(1)直达声:是由声源直接到达接收点的声音。
在传播过程中,这部分声音不受室内界面的影响,直达声的强度基本上按照与声源距离的平方成反比而衰减。
(2)近次反射声:一般是指在直达声之后相对延迟时间为50毫秒内到达的反射声。
这些短延迟的反射声主要是经由室内界面一次、二次以及少数三次等反射后到达接收点的声音,故称近次反射声。
人耳对于延时为50号秒以内的反射声难以与直达声分开,故这些反射声会对直达声起到加强作用。
此外,短延时反射声和侧向到达的反射声对音质有很大影响。
(3)混响声:在近次反声后续到达的、经过多次反射的声音统称为混响声。
在远场混响声的加强,对于该接收点的声音强度起决定作用,而且其衰减率的大小对音质有重要影响。
二.房间共振在一些内装修材料比较坚硬的房间内,当声源发声时,常会激发这个房间内的某些固有频率(或称简正频率)的声音即出现了房间的共振现象。
当发生共振现象时,声源中某些频率被特别的加强了,在声学上称为出现了“声染色”现象。
此外这种房间共振还表现为使某些频率(主要是低频)的声音在空间分布上很不均匀,即出现了在某些固定位置上的加强和某些固定位置上的减弱。
在一些体积较小的矩形播音室内常常出现的低频嗡声,就是由房间共振引起的。
声染色可能性最大的频率段为100~175Hz,其次为250 Hz附近。
房间产生共振可以用驻波原理加以解释。
驻波是两列同频率、同振幅但沿着某一轴向相向传播的波相互叠加而形成的。
三.隔声罩一般为封闭小空间,同样的噪声源,罩内某点声级比无罩时为高,尤其当罩内无吸收时。
在确定隔声罩的平均隔声量TL时,据使用经验,一般罩内有强吸收或一般吸收、或无吸收时的插入损失分别为20、15和10dB左右。
室内声学设计原理及其应用概述室内声学设计是一门研究如何改善和优化室内声学环境的学科。
通过合理的声学设计,可以提高音质、降低噪音、改善语音传播效果等,为人们提供舒适的听觉体验。
本文将介绍室内声学设计的原理和一些实际的应用。
原理吸声材料室内声学设计中常用的一种方法是通过使用吸声材料来减少声音的反射,从而降低室内的噪音水平。
吸音材料通常具有良好的吸声特性,能够将声波能量转化为热能而不发生反射。
常见的吸声材料包括吸声板、吸声棉、吸声隔板等。
声音传播控制为了改善室内声学环境,需要控制声音的传播路径和方向。
通过合理的室内布局、隔音设计和声学隔离措施等,可以减少不必要的声音传播,降低噪音污染。
常见的控制方法包括加装隔音门窗、设置声音隔墙等。
模型建立与仿真在室内声学设计中,借助计算机模型建立和声学仿真技术可以帮助设计师更好地分析和优化声学环境。
通过建立合适的模型,并使用相关的仿真软件,可以模拟声波传播、吸声效果等,为声学设计提供科学依据。
应用音乐厅与剧院音乐厅和剧院是室内声学设计的重要应用领域。
良好的音质和声场效果对于演出效果至关重要。
合理的吸声材料、布局设计和声学调音等可以使得声音更加透明、均衡,提升听众的音乐鉴赏和观剧体验。
多媒体演播室在多媒体演播室的声学设计中,需要兼顾语音和音乐的表现效果。
通过合理的吸声和音响设备配置,可以清晰地传递语音信息,并减少回音和噪音的干扰,提高演播室的语音录制和后期制作效果。
教室和会议室在教室和会议室中,良好的声学设计可以提高语音传播效果,使得听众能够更清晰地听到演讲者的声音,减少干扰和疲劳感。
合适的吸声材料、声学屏障等可以帮助控制噪音和回音,提升听众的听讲体验。
医院和办公室在医院和办公室中,室内声学设计对人们的健康和工作效率有着直接影响。
通过降低噪音、优化声音传播路径和控制回音等,可以提供安静的工作和治疗环境,改善人们的工作和生活质量。
结论室内声学设计是一门综合学科,通过合理运用吸声材料、声音传播控制和模型建立与仿真等技术,可以提高室内声学环境的质量,为人们提供更好的听觉体验。
建筑知识:建筑室内声学设计的原理与技巧建筑室内声学设计的原理与技巧随着城市化进程的不断加速,人们的生活空间越来越受到关注。
建筑室内声学设计已经成为人们关注的焦点之一,而人们对建筑室内声学设计的要求也越来越高。
本文将介绍建筑室内声学设计的原理与技巧,以供建筑师和设计师参考。
一、声学的基本原理声学是指研究声波在空气,固体,液体,气体和晶体等物质中传播的物理学科学。
声学的基本原理可以分为声源、声波传播和声接收三个部分。
声源:声学中的声源是产生声波的物体或空间。
声源的特点主要是声压及其随时间变化的周期性。
声压是指声波在空气中的压力变化,通常用牛顿/平方米(nPa)或德西贝尔(dB)来表示。
声波传播:声波是一种机械波,它是由物体在某一点振动所产生的,通过空气传送到其他地方。
声波的传播速度与介质的密度和弹性有关。
声波传播可以分为直线传播和衍射传播两种形式。
声接收:声学中的声接收是指声波在空气中碰到接收器所产生的响应。
接收器可以是麦克风、扬声器、录音机和电话等。
二、室内声学设计的基本原理室内声学设计是指在建筑室内进行声学设计的过程。
它包括声源的位置、声波传播路径以及接收器的位置等的优化,以实现音质的最佳效果。
室内声学设计是非常重要的,因为它不仅对建筑的视觉效果有着很大的影响,同时也能够改善建筑物的环境和人们的舒适度。
室内声学设计的基本原理可以分为三个方面。
首先,作为声音发射源的乐器或音响设备的设计是非常重要的。
音响设备的设计应符合声学原理,以实现最优的声音效果。
同时应考虑到声音的传播以及接收的方向。
设计良好的音响设备不仅可以提高音质,还可以使人听得更舒适。
其次,声波传播路径的设计也非常重要。
声波的传播路径可能会受到建筑物,人,物体的反射影响。
因此,为了降低声音的反射和噪声污染,设计师必须考虑使用声学装饰、吸声板、垂直切割面等声学材料。
最后,室内声学设计还要注意阻隔噪声的要求。
建筑物应该采用防噪声材料,防止噪音从外部环境进入建筑物内部,从而保证内部的声音品质。