立体图形的整理复习
- 格式:ppt
- 大小:207.50 KB
- 文档页数:16
《立体图形整理和复习》(教案)六年级下册数学人教版教学内容:本课主要对小学阶段学习的立体图形进行整理和复习。
通过引导学生回顾和整理长方体、正方体、圆柱、圆锥和球等立体图形的特征和性质,加深学生对这些立体图形的理解和认识。
同时,通过解决一些实际问题,培养学生运用立体图形知识解决问题的能力。
教学目标:1. 让学生理解和掌握长方体、正方体、圆柱、圆锥和球等立体图形的特征和性质。
2. 培养学生运用立体图形知识解决问题的能力。
3. 培养学生的空间想象力和逻辑思维能力。
教学难点:1. 球的表面积和体积公式的推导。
2. 立体图形在实际问题中的应用。
教具学具准备:1. 长方体、正方体、圆柱、圆锥和球的模型或图片。
2. 教学PPT或黑板。
3. 练习题或作业纸。
教学过程:1. 导入:通过展示一些立体图形的模型或图片,引起学生对立体图形的兴趣和好奇心。
然后引导学生回顾小学阶段学习的立体图形,让学生分享他们对这些立体图形的认识和了解。
3. 解决实际问题:通过给出一些实际问题,让学生运用立体图形的知识来解决问题。
例如,计算长方体的体积、表面积,或者计算圆柱的体积等。
通过解决实际问题,培养学生的实际操作能力和解决问题的能力。
4. 小组讨论:将学生分成小组,给每个小组发一道与立体图形相关的题目,让他们在小组内进行讨论和解答。
通过小组讨论,培养学生的合作能力和思维能力。
板书设计:1. 长方体、正方体、圆柱、圆锥和球的特征和性质。
2. 立体图形在实际问题中的应用。
3. 小组讨论的题目和解答。
作业设计:1. 判断题:判断一些立体图形的特征和性质是否正确。
2. 计算题:计算一些立体图形的体积、表面积等。
3. 应用题:解决一些与立体图形相关的实际问题。
课后反思:重点关注的细节:教学难点教学难点是教学过程中学生难以理解或掌握的知识点,对于本节课来说,球的表面积和体积公式的推导以及立体图形在实际问题中的应用是学生难以掌握的知识点。
因此,教师需要在这两个方面进行详细的补充和说明,以确保学生能够理解和掌握这些知识点。
立体图形的知识点整理一、长方体、正方体都有6个面,12条棱,8个顶点。
正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。
容器所能容纳其它物体的体积叫做容器的容积。
六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍。
八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。
九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。
即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。
立体图形的认识整理与复习(教案)一、教学目标:1. 学生能够理解什么是立体图形,能够认识到不同立体图形的特点;2. 学生能够简单地分辨出不同的立体图形,如正方体、圆锥、球体等;3. 学生能够将所学立体图形的性质与具体例子联系起来,掌握立体图形的基本认识和应用。
二、教学内容:1. 立体图形的概念和特征;2. 正方体、长方体、球体、圆锥、圆柱等常见立体图形的认识。
三、教学重点:1. 立体图形的概念和特征;2. 不同立体图形的特点和应用。
四、教学难点:1. 立体图形的特征和性质较多,学生需要对它们进行归纳总结;2. 针对不同的立体图形进行分类和认识需要考虑学生的认知能力。
五、教学方法:1. 讲解法和演示法相结合,通过讲解将立体图形的概念和特征传递给学生,并通过演示来让学生观察实物和认识立体图形的特点;2. 给学生分组,让他们互相交流并讨论分别属于哪种立体图形,以增强学生的归纳总结能力。
六、教学过程:1. 导入环节:首先向学生介绍什么是立体图形,告诉学生,简单来说,立体图形是有长、宽、高三个方向的图形,与平面图形不同。
在日常中经常遇到各种各样的立体图形,那么我们今天就要一起来认识一下它们。
2. 认识不同的立体图形:a. 首先介绍正方体,讲解正方体的定义、特点以及常见应用(如骰子等)。
并且通过实物进行演示,让学生观察正方体的特点,提高学生对其的认识。
b. 接着介绍长方体,同样讲解长方体的定义、特点和常见应用。
通过实物演示来让学生观察长方体的特点。
c. 再介绍圆锥,并讲解圆锥的定义、特点和应用。
比如圆锥形的冰淇淋蛋筒等。
d. 最后再向学生介绍一个非常常见的立体图形——球体。
通过摆放球体或者举例证明,讲解球体的特点、常见应用等,比如球形雪球等。
以上四种立体形体都要在实物演示中向学生展示。
演示应当重点描述每个图形的特点,让学生通过观察和讨论慢慢地掌握其特征。
3. 总结理解:让学生分组,针对刚才学习的四种立体图形,分别举出每种图形的两到三个具体的例子。
《立体图形的整理与复习》教学设计一、情境导入请看大屏幕,这是数学中最基本的图形:(一个点)。
无数个点组成一条线,无数条线形成一个面。
无数个面围成一个体。
这就是点动成线,线动成面,面动成体。
点、线、构成了丰富多彩的图形世界。
这节课我们就来整理和复习由点面构成的立体图形。
板书课题,立体图形二、整理复习1、整理归纳本节课知识结构。
师:一起来看一下这节课的学习目标出示:1、回顾整理立体图形的有关内容,进一步认识立体图形,理解表面积、体积及计算公式的含义。
2、灵活运用公式解决问题。
师:大家听明白了没有,明确了学习目标,学习就有了方向。
课前同学们结合88页的例4,例5对立体图形的有关知识进行了整理和复习,现在请同学们在小组内合作学习。
请看学习要求。
出示:群学共享合作要求:(1)小组内交流学习成果,及时完善补充。
(2)整理出最佳知识结构图,做好汇报准备。
(小组合作开始)小组粘贴;师:这一小组已经整理好了,来说说怎么整理的。
生:我们是从立体图形的认识、表面积、体积、来整理的。
师:还有那些同学整理的方法一样的。
这一组整理的方法师是按什么整理的?(生:各立体图形的特征,表面积,体积。
)师:我们班的同学有的是以表格的形式整理的,有点同学是以智慧树的形式整理的。
其实,不管以哪一种形式,都包含了以下几个知识点。
立体图形的认识,立体图形的表面积,以及体积的相关知识。
今天这节课就按这里的思路梳理、深化知识。
师:同学们你们喜欢玩的游戏吗?请听游戏规则:听要求,摸物体,说特征。
2、长方体和正方体的特征。
师:老师这里有一个百宝箱,谁来试试。
请摸出长方体,对不对?师:你是怎么摸得又对又快的,给我们大家介绍一下。
生:因为长方体的特征是:有6个面,12条棱,有一个一定是长长的。
顺桌长的面往下摸应该是窄一些的面。
师:也就是她师根据什么来摸的?长方体的特征还有什么?生:对面相等。
我们一起来回顾一下长方体的特征。
你来读一下。
师:再次回顾了长方体的特征。
第六单元《立体图形的整理与复习》(教案)六年级下册数学人教版一、教学内容本节课是六年级下册数学人教版的《立体图形的整理与复习》,主要内容包括回顾和巩固立体图形的知识,如正方体、长方体、圆柱体和球体的特征,以及它们的表面积和体积的计算方法。
二、教学目标通过本节课的学习,使学生能够熟练掌握立体图形的特征和计算方法,提高学生的空间想象力,培养学生的逻辑思维能力。
三、教学难点与重点重点:立体图形的特征和计算方法的掌握。
难点:立体图形表面积和体积计算公式的理解和应用。
四、教具与学具准备教具:立体模型、PPT课件学具:笔记本、彩笔五、教学过程1. 情景引入:通过展示各种立体模型,引导学生回顾立体图形的特征。
3. 例题讲解:以正方体为例,讲解表面积和体积的计算方法。
4. 随堂练习:让学生自主计算一个长方体的表面积和体积。
5. 巩固拓展:引导学生思考如何计算其他立体图形的表面积和体积。
六、板书设计立体图形的特征和计算方法正方体:六面体,六个正方形,表面积=6a²,体积=a³长方体:六面体,三个不同的面,表面积=2(ab+ac+bc),体积=abc圆柱体:侧面为矩形,底面为圆,表面积=2πrh+2πr²,体积=πr²h球体:一个圆形,表面积=4πr²,体积=4/3πr³七、作业设计(1)一个边长为4厘米的正方体。
(2)一个长为6厘米,宽为3厘米,高为5厘米的长方体。
(3)一个底面半径为3厘米,高为10厘米的圆柱体。
(4)一个半径为5厘米的球体。
答案:(1)表面积:96厘米²,体积:64厘米³(2)表面积:126厘米²,体积:90厘米³(3)表面积:180厘米²,体积:282.6厘米³(4)表面积:314厘米²,体积:523.6厘米³八、课后反思及拓展延伸通过本节课的学习,学生对立体图形的特征和计算方法有了更深入的了解。