四川大学大学物理第五章习题册解答1教学文案
- 格式:ppt
- 大小:791.00 KB
- 文档页数:24
大学物理第五章习题答案大学物理第五章习题答案第一题:题目:一个质量为m的物体以速度v水平运动,撞到一个质量为M的静止物体,两物体发生完全弹性碰撞,求碰撞后两物体的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后物体m的速度为v1,物体M的速度为V1,则有mv = mv1 + MV1。
由于碰撞是完全弹性碰撞,动能守恒定律也成立,即(mv^2)/2 = (mv1^2)/2 + (MV1^2)/2。
将第一个方程代入第二个方程,可得到关于v1和V1的方程组。
解方程组即可得到碰撞后两物体的速度。
第二题:题目:一个质量为m的物体以速度v1撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V2,则有mv1 = mv2 + MV2,以及(mv1^2)/2 = (mv2^2)/2 + (MV2^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V2。
第三题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后两物体粘在一起,求粘在一起后的速度。
解答:根据动量守恒定律,碰撞前后动量的总和保持不变。
设碰撞后两物体的速度为V,则有mv = (m+M)V。
解方程即可得到粘在一起后的速度V。
第四题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求物体M的速度。
解答:同样利用动量守恒定律和动能守恒定律,设碰撞后物体m的速度为v2,物体M的速度为V,则有mv = mv2 + MV,以及(mv^2)/2 = (mv2^2)/2 +(MV^2)/2。
将第一个方程代入第二个方程,解方程组即可得到物体M的速度V。
第五题:题目:一个质量为m的物体以速度v撞击一个质量为M的静止物体,碰撞后物体m的速度变为v2,求碰撞后两物体的动能变化。
解答:碰撞前物体m的动能为(mv^2)/2,碰撞后物体m的动能为(mv2^2)/2,两者之差即为动能变化。
第五章课后习题答案5.1 解:以振动平衡位置为坐标原点,竖直向下为正向,放手时开始计时。
设t 时刻砝码位置坐标为x ,由牛顿第二定律可知: 220)(dtx d mx x k mg =+-其中0x 为砝码处于平衡位置时弹簧的伸长量,所以有 0kx mg = 解出0x 代入上式,有:022=+x mk dtxd 其中 mk =ω可见砝码的运动为简谐振动简谐振动的角频率和频率分别为: s r a d x g mk /9.90===ω Hz 58.12==πων振动微分方程的解为)c o s (ϕω+=t A x由起始条件 t =0 时,,1.00m x x -=-= 0=v得: A =0.1m ,πϕ=振动方程为:)9.9cos(1.0π+=t x5.2 证明:取手撤去后系统静止时m 的位置为平衡位置,令此点为坐标原点,此时弹簧伸长为x ,则有: 0sinkx mg =θ (1)当物体沿斜面向下位移为x 时,则有: ma T mg =-1sin θ (2) βJ R T R T =-21 (3) )(02x x k T += (4)R a β= (5) 将(2)与(4)代入(3),并利用(5),可得: k x R R kx mgR a RJ mg --=+0sin )(θ利用(1)式可得 x RJ mR kR dtx d a +-==22所以物体作简谐振动因为 R J mR kR +=ω 所以振动周期为 ωπ2=T5.3 解: 因为 mk ππων212==所以 :1221m m =νν22121)(m m νν==2 Kg5.4 解:(1) 由振动方程)420cos(01.0ππ+=t x 可知:振幅A =0.01m ;圆频率 πω20=; 周期 s T 1.02==ωπ频率Hz 10=ν ;初相40πϕ=(2)把t =2s 分别代入可得:2005.0)420cos(01.0|2=+==ππt x t m2314.0)420sin(2.0|2-=+-===πππt dt dx v t m/s)420sin(4|22πππ+===t dtdv a t5.5 解: T =2s ,ππω==T2设振动方程为:)cos(10ϕπ+=t x则速度为:)s i n (10ϕππ+-=t v加速度为: )c o s (102ϕππ+-=t a根据t =0 时,x =5cm ,v < 0 的条件,得振动的初相为 3πϕ=,故振动方程为:)3cos(10ππ+=t x设在 1t 时刻振子位于cm x 6-=处,并向x 轴负方向运动,则有:53)3'c o s (-=+ππt 54)3's i n (=+ππt故有 s cm t v /1.25)3'sin(10-=+-=πππ22/2.59)3'cos(10s cm t a =+-=πππ设弹簧振子回到平衡位置的时刻为2t ,则有πππ2332=+t ,从上述位置回到平衡位置所需时间为: st t 8.0/)]3)53(arccos()323[(12=----=-ππππ5.6。
[习题解答]5-1 作定轴转动的刚体上各点的法向加速度,既可写为a n= v2 /R,这表示法向加速度的大小与刚体上各点到转轴的距离R成反比;也可以写为a n= ω2 R,这表示法向加速度的大小与刚体上各点到转轴的距离R成正比。
这两者是否有矛盾?为什么?解没有矛盾。
根据公式,说法向加速度的大小与刚体上各点到转轴的距离R成反比,是有条件的,这个条件就是保持v不变;根据公式,说法向加速度的大小与刚体上各点到转轴的距离R成正比,也是有条件的,条件就是保持ω不变。
5-2一个圆盘绕通过其中心并与盘面相垂直的轴作定轴转动,当圆盘分别在恒定角速度和恒定角加速度两种情况下转动时,圆盘边缘上的点是否都具有法向加速度和切向加速度?数值是恒定的还是变化的?解(1)当角速度ω一定时,切向速度也是一定的,所以切向加速度,即不具有切向加速度。
而此时法向加速度,可见是恒定的。
(2)当角加速度一定时,即恒定,于是可以得到,这表示角速度是随时间变化的。
由此可得.切向加速度为,这表示切向加速度是恒定的。
法向加速度为,显然是时间的函数。
5-3 原来静止的电机皮带轮在接通电源后作匀变速转动,30s后转速达到152 rad⋅s-1 。
求:(1)在这30 s内电机皮带轮转过的转数;(2)接通电源后20 s时皮带轮的角速度;(3)接通电源后20 s时皮带轮边缘上一点的线速度、切向加速度和法向加速度,已知皮带轮的半径为5.0 cm。
解(1)根据题意,皮带轮是在作匀角加速转动,角加速度为.在30 s内转过的角位移为.在30 s内转过的转数为.(2)在t = 20 s时其角速度为.(3)在t = 20 s时,在皮带轮边缘上r = 5.0 cm处的线速度为,切向加速度为,法向加速度为.5-4 一飞轮的转速为250 rad⋅s-1 ,开始制动后作匀变速转动,经过90 s停止。
求开始制动后转过3.14⨯103 rad时的角速度。
解飞轮作匀变速转动,,经过90 s,,所以角加速度为.从制动到转过,角速度由ω0变为ω,ω应满足.所以.5-5 分别求出质量为m = 0.50 kg、半径为r = 36 cm的金属细圆环和薄圆盘相对于通过其中心并垂直于环面和盘面的轴的转动惯量;如果它们的转速都是105 rad⋅s-1 ,它们的转动动能各为多大?解(1)细圆环:相对于通过其中心并垂直于环面的轴的转动惯量为,转动动能为.(2)相对于通过其中心并垂直于盘面的轴的转动惯量为,转动动能为.5-6 转动惯量为20 kg⋅m2 、直径为50 cm的飞轮以105 rad⋅s-1 的角速度旋转。
大学物理习题集(上)专业班级 姓名_ 学号_第五章 刚体的定轴转动一.选择题1.关于刚体对轴的转动惯量,下列说法中正确的是[ C ](A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B )取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
2. 均匀细棒 OA 可绕通过某一端 O 而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自 由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?[ A ](A )角速度从小到大,角加速度从大到小。
A(B )角速度从小到大,角加速度从小到大。
(C )角速度从大到小,角加速度从大到小。
(D )角速度从大到小,角加速度从小到大。
3. 如图所示,一圆盘绕水平轴 0 做匀速转动,如果同时相向地射来两个质量相同、速度大小相同,且沿同一直线运动的子弹。
子弹射入圆盘均留在盘内,则 子弹射入后的瞬间,圆盘的角速度将 [ B ](A )增大; (B )减小; (C )不变; (D )无法确定。
解答 以圆盘和两子弹为系统,外力矩为零,系统的角动量守恒。
按题意, 两个子弹的初始角动量(对 0 轴之和为零。
两子弹留在圆盘内,增大了圆盘的 转动惯量。
设圆盘的转动惯为 J ,转动的角速度为 ω0 ,则有J ω0 = ( J + ∆J )ωω0 > ω有速度减小,所以应选(B )4. 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂物体,物体的质量为 m ,此时滑轮的角加速度为 a 。
若将物体卸掉,而用大小等于 mg 、方向向下的力拉绳子,则滑轮的角加速度将[ A ](A)变大; (B )不变; (C )变小; (D )无法判断。
解答如图 5-4(a)所示,设滑轮半径为 R,转动惯量为 J。
当绳下滑挂一质量为m 的物体时,受绳的张力F T 和重力W=mg 作用,加速度a 铅直向下。