几何与代数习题参考答案_一二三章
- 格式:pdf
- 大小:253.50 KB
- 文档页数:12
高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。
第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于ABCabcABCDabca b +b c +0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。
3. 试证三角形的三中线可以构成一个三角形。
证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。
4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且A BabcE FD C111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。
高等数学几何教材答案第一章:平面几何1. 直线与点的关系考虑直线L和点P,有以下几种情况:(1) P在L上:可以由坐标求解,若点的坐标满足直线的方程,则P 在L上;(2) P在L的延长线上:将直线的方程带入坐标计算,若方程成立,则P在L的延长线上;(3) P在L的两侧:利用点到直线的距离公式,计算出P到L的距离d,若d>0,则P在L的两侧。
2. 直线与直线的位置关系两条直线L1和L2可以有以下几种位置关系:(1) 相交:两直线有且只有一个交点;(2) 平行:两直线没有交点,方程也无解;(3) 重合:两直线完全重合,方程有无数解;(4) 相交于一点的延长线上:两直线有且只有一个交点,但该点在延长线上;(5) 相交于一点的中点上:两直线有且只有一个交点,且该点为两线段的中点。
3. 直线与平面的位置关系考虑直线L和平面P,有以下几种情况:(1) 相交:直线与平面有一个交点;(2) 平行:直线与平面没有交点,方程也无解;(3) 含于平面:直线完全位于平面上,方程有无数解。
第二章:空间几何1. 空间点和点线距离(1) 点P到直线L的距离:利用点到直线的距离公式,计算出P到L的距离;(2) 点P到平面的距离:利用点到平面的距离公式,计算出P到平面的距离;(3) 点P到点集合S的最近距离:计算出P到点集合S中所有点的距离,找出其中的最小值即为最近距离。
2. 线段相交判定法两条线段AB和CD相交的条件有以下几种:(1) AB与CD的延长线相交;(2) A、B在CD的异侧,且C、D在AB的异侧;(3) A、B、C、D四个点共线,且CD的某个端点在AB上;(4) A、B、C、D四个点共线,且AB的某个端点在CD上。
3. 空间直线与直线的位置关系考虑两条直线L1和L2,它们可以有以下几种位置关系:(1) 相交:两直线有且只有一个交点;(2) 零交:两直线没有交点,方程也无解;(3) 平行:两直线没有交点,但方程有解;(4) 共面:两直线在同一个平面内。
习题一 (1)向量的线性运算与空间直角坐标系一、填空题1. 1) 2,πβα=; 2) 0,=βα; 3)βαπβα≥=且,,; 4)0=βα,;5) 0≤αβαβ+=>−=2. 1) 线性相关; 2)线性无关;3)线性相关; 4) 线性无关。
3. )5,3,2(−−;(2,3,5)−−;(2,3,5)−;(2,3,0)−; (0,3,0);2二、证明: ∵,+=与平行,∴可设λ−= 所以,λβαλλλλλ+−=+−=−−=−=)1()1()(.三、 解:因为 ,)()()(θαγγββα=−+−+− 所以向量αγγββα−−−,,共面。
----------想清楚共面与上面等式的关系四、解:设M 的坐标为),,(z y x ,则有),3,2,1(),3,2,1(z y x z y x −−−−=−−−=由条件,1233,5,2,3,(5,2,3)1232x y z x y z M x y z −−−===−∴=−==∴−−−−−。
五、解:设α的方向余弦为γβαcos ,cos ,cos ,则 ,353cos =α,355cos =β351cos −=γ。
平行的单位向量为±。
--有两个;单位向量实际上代表了向量的方向 (2)向量的内积与外积一、 判断题1. ( 错 ) ----------化简成()0αβγ⋅−=就明显了,2. ( 对 ) ----------注意一些命题的不同说法3. ( 错 ) ----------外积是一个向量4. ( 对 )二、 填空题1. (1)6−;(2) 13;(3) 61−。
----------充分利用內积的运算性质:和数的加法、乘法没啥不同,交换律、结合律、分配律2.30±。
3.154。
---------- 外积可以用来求面积,是平行四边形的 三、解1)=×γω()()(1)λαβαβλαβ+×−=−+×,当ω与γ平行时,ω与γ平行时, θβαπβαγω≠×∴==×,32,,0∵,1λ=−。