单片机晶振电路原理及作用
- 格式:docx
- 大小:7.84 KB
- 文档页数:2
晶振的工作原理一、什么是晶振?晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。
晶振还有个作用是在电路产生震荡电流,发出时钟信号.晶振是晶体振荡器的简称。
它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。
高级的精度更高。
有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振在数字电路的基本作用是提供一个时序控制的标准时刻。
数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。
晶振的作用是为系统提供基本的时钟信号。
通常一个系统共用一个晶振,便于各部分保持同步。
有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。
如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。
在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。
石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^ (-11)。
广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。
石英晶振不分正负极, 外壳是地线,其两条不分正负二、晶振的使用晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
晶振电路的原理及匹配方法孔进亮【摘要】本文介绍了单片机系统晶振电路的原理、晶振电路参数的计算和晶振电路的匹配方法,总结了晶振电路的参数调整经验.【期刊名称】《家电科技》【年(卷),期】2015(000)005【总页数】4页(P76-79)【关键词】晶振;匹配方法;振荡电路【作者】孔进亮【作者单位】珠海格力电器股份有限公司广东珠海519070【正文语种】中文振荡电路是单片机系统的“脉搏”,为单片机系统提供准确的时基。
如果振荡电路工作频率出现偏差,会导致计时不准,甚至通讯不能同步(特别是高速通讯)。
振荡电路在单片机系统中起着至关重要的作用,本文将以晶振电路为例,介绍晶振电路的原理及其匹配方法。
1 晶振电路原理我们在单片机上使用的晶振电路(图1)称为作皮尔斯(Pierce)振荡器[1]。
我们知道振荡电路主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,该电路将直流电源能量转换为一定波形的交变振荡信号。
在单片机内部,反相器作为为主动元件,对输入信号进行反相和放大,晶振及其负载电容(包括CL1、CL2、CS等)组成了反馈网络。
由于反向器的线性区域很窄,容易出现抖动,故此加入RF引入直流负反馈,迫使反向器工作在线性区域(图2)。
这时,工作在线性区的反向器就等同于反向放大器了。
RF并为反向器提供直流偏置,使电路更灵敏。
反馈振荡电路正常工作必须满足三个条件:起振条件(保证接通电源后能逐步建立起振荡),平衡条件(保证进入维持等幅持续振荡的平衡状态)和稳定条件(保证平衡状态不因外界不稳定因素影响而受到破坏)。
要达到振荡状态,振荡电路幅值和相位均需要满足一定的条件,称巴克豪林(Barkhausen)判据[1]:A(f)=|A(f)|×ejfα(f)B(f)=|B(f)|×ejfβ(f)︱A(f)•B(f)︱≥1α(f)+β(f)=2nπ(n=0,1,2…)其中:A(f)是放大器部分,给这个闭环系统提供能量以保持其振荡;B(f)是反馈通道,决定了振荡电路的频率。
单片机内置时钟芯片概述单片机(Microcontroller Unit,MCU)是集成了中央处理器(CPU)、内存、输入输出端口和各种片上外设(Peripheral Interface Components,PIC)的微型计算机系统。
时钟芯片(Clock Chip)是单片机中的一个重要组成部分,它负责产生和管理系统的时钟信号,使整个系统能够按照指定频率和时序进行工作。
本文将重点介绍单片机内置的时钟芯片,包括其工作原理、功能特点以及在单片机应用中的应用场景。
工作原理单片机内置的时钟芯片一般采用晶体振荡器(Crystal Oscillator)或者晶振电路(Crystal Circuit)来产生稳定的时钟信号。
晶体振荡器通常由振荡器电路、晶体谐振器和放大器电路组成。
晶体振荡器的工作原理是利用晶体谐振器的特性,在外加电场的作用下,晶体会产生固有的机械振动,从而产生稳定的频率信号。
晶体谐振器是一个具有回路谐振频率的电路元件,与晶体振动的频率相对应。
当MCU系统上电时,时钟芯片首先启动,通过晶体振荡器产生一个基准频率的时钟信号。
这个基准时钟信号经过分频器进行分频处理,生成系统中各个模块所需的不同频率的时钟信号。
功能特点高精度单片机内置的时钟芯片具有高精度的特点。
晶体振荡器的频率精度较高,通常在几个百万分之一的误差范围内。
而且晶体振荡器的稳定性较好,可以在比较宽的温度范围内正常工作。
可编程时钟芯片可以根据系统需求进行编程。
通过设置分频器的分频系数,可以得到需要的时钟频率,以满足各个模块对时钟信号的要求。
多功能除了产生稳定的时钟信号外,时钟芯片还具有其他多种功能。
例如,它可以提供外部中断信号,用于唤醒系统或触发特定事件;还可以提供定时器功能,用于定时操作,例如定时中断、延时等。
应用场景单片机内置的时钟芯片广泛应用于各种单片机系统中。
以下是几个常见的应用场景:实时时钟时钟芯片可以用于实时时钟系统(Real-Time Clock,RTC),用于记录系统的当前时间。
晶振工作原理
晶振工作原理是指利用晶体产生机械振动并将其转化为电信号的过程。
晶振器由一个压电晶体和两个电极组成。
当对晶体施加外加电场时,晶体会发生机械振动,这是由于电场使晶体内部正负离子分离而产生的电荷的作用。
晶体的尺寸和形状会影响其机械振动的频率。
在晶体振动过程中,晶体会产生电压,这是由于晶体的压电效应。
压电效应是指在某些晶体中,当施加机械应力时,晶体会在两端产生电荷差。
这个电荷差可以被测量并转化为电信号。
晶振器的电路中会加入一个反馈电路,用于维持晶体振动的稳定性。
当晶体振动频率趋向于不稳定时,反馈电路会通过相应的电路调整晶体周围的电场,使振动频率恢复到设定的数值。
晶振器可以根据需求选择不同频率的晶体来实现不同的工作频率。
晶振器广泛应用于各种电子设备中,例如计算机、通信设备、数字电视等,用于提供稳定的时钟信号或频率参考。
单片机晶振电路原理
单片机晶振电路是用于提供时钟信号的电路,它由晶体振荡器和相关的外围电路组成。
晶体振荡器是一种能够将电能转换为机械振动的装置,它由晶体和集成电路组成。
在单片机晶振电路中,晶体被连接到晶体振荡器的输入端,晶体振荡器的输出端则连接到单片机的时钟输入引脚。
晶体振荡器能够将电能转换为机械振动,而晶体的机械振动会引起晶体的电极上出现交流电压信号。
这种交流电压信号经过放大和整形之后,被提供给单片机作为时钟信号使用。
与晶体振荡器相连的外围电路主要包括电容和电阻。
其中,电容在电路中起到加强振荡信号的作用,它能够存储电荷并在振动周期内释放出来,从而稳定晶体的振荡频率;电阻则起到限制电流流动的作用,它与电容一起构成了振荡器的谐振回路。
当晶体振荡器启动时,晶体会在电场的作用下发生机械振动,产生交流电压信号。
这个交流电压信号会被放大并整形,最后供给单片机作为时钟信号。
单片机根据时钟信号定时执行相应的指令,实现各种功能。
总之,单片机晶振电路是通过晶体振荡器和相关的外围电路来提供稳定的时钟信号,以确保单片机正常运行。
晶振电路周期性输出信号的标称频率(Normal Frequency),就是晶体元件规格书中所指定的频率,也是工程师在电路设计和元件选购时首要关注的参数。
晶振常用标称频率在1~200MHz之间,比如32768Hz、8MHz、12MHz、24MHz、125MHz等,更高的输出频率也常用PLL(锁相环)将低频进行倍频至1GHz以上。
输出信号的频率不可避免会有一定的偏差,我们用频率误差(Frequency Tolerance)或频率稳定度(Frequency Stability)来表示,单位是ppm,即百万分之一(parts per million)(1/106),是相对标称频率的变化量,此值越小表示精度越高。
比如,12MHz晶振偏差为±20ppm,表示它的频率偏差为12×±20Hz=±240Hz,即频率范围是(11999760~12000240Hz)。
另外,还有一个温度频差(Frequency Stability vs Temp),表示在特定温度范围内,工作频率相对于基准温度时工作频率的允许偏离,它的单位也是ppm。
我们经常还看到其它的一些参数,比如负载电容、谐振电阻、静电容等参数,这些与晶体的物理特性有关。
石英晶体有一种特性,如果在晶片某轴向上施加压力时,相应施力的方向会产生一定的电位。
相反的,在晶体的某轴向施加电场时,会使晶体产生机械变形;如果在石英晶片上加上交变电压,晶体就会产生机械振动,机械形变振动又会产生交变电场,尽管这种交变电场的电压极其微弱,但其振动频率是十分稳定的。
当外加交变电压的频率与晶片的固有频率(与切割后的晶片尺寸有关,晶体愈薄,切割难度越大,谐振频率越高)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
将石英晶片按一定的形状进行切割后,再用两个电极板夹住就形成了无源晶振,其符号图如下所示:下图是一个在谐振频率附近有与晶体谐振器具有相同阻抗特性的简化电路。
单片机工作原理及原理图解析概述单片机(Microcontroller)是一种集成了微处理器核心、存储器、输入/输出(I/O)端口和其他功能模块的集成电路芯片,用于控制各种设备和系统。
单片机广泛应用于工业控制、家电、汽车电子、医疗设备等领域。
本文将详细介绍单片机的工作原理和原理图解析。
一、单片机的工作原理单片机的工作原理可以分为三个主要方面:中央处理器(CPU)的功能、存储器的功能和输入/输出(I/O)端口的功能。
1. 中央处理器(CPU)中央处理器是单片机最核心的部分,它通过执行指令来控制整个系统。
它由运算器、控制器和时钟电路组成。
运算器负责执行各种算术和逻辑运算,控制器根据存储器中的指令来控制运算器的工作,时钟电路提供统一的时序信号。
2. 存储器存储器用于存储程序和数据。
一般来说,单片机的存储器分为程序存储器(ROM)和数据存储器(RAM)。
程序存储器用于存储程序,通常是只读存储器,即一旦写入程序后就不可更改。
数据存储器用于存储数据,它可以读写,并提供临时存储空间。
3. 输入/输出(I/O)端口单片机通过输入/输出端口与外部设备进行信息的输入和输出。
输入端口接收外部设备的信号,输出端口发送单片机处理后的信号。
例如,当单片机用于控制电机时,输入端口接收传感器的信号,输出端口控制电机的状态。
二、单片机的原理图解析单片机的原理图包含了各种功能模块的连接关系,例如电源、晶振、I/O端口等。
以下是对常见的单片机原理图中各模块的解析。
1. 电源电路电源电路主要提供各模块所需的稳定电压和电流。
常见的电源电路包括稳压二极管(如7805)、电容滤波器和电位器调节电路,用于提供稳定的电源。
2. 晶振电路晶振电路提供单片机的时钟信号,以驱动单片机的运算和控制。
常见的晶振电路包括晶振、电容和电阻。
晶振的频率决定了单片机的工作速度。
3. I/O端口I/O端口连接单片机与外部设备,实现信息的输入和输出。
它一般包括多个引脚,每个引脚可以配置为输入或输出。
单片机晶振电路原理及作用单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。
在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。
高级的精度更高。
有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
单片机晶振的作用是为系统提供基本的时钟信号。
通常一个系统共用一个晶振,便于各部分保持同步。
有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。
如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
下面我就具体的介绍一下晶振的作用以及原理,晶振一般采用如图1a 的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv 是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。
其中Co,C1,L1,RR 是晶体的等效电路。
分析整个振荡槽路可知,利用Cv 来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv 三个电容串联后和Co 并联再和C1 串联。
可以看出:C1 越小,Co 越大,Cv 变化时对整个槽路电容的作用就越小。
因而能压控的频率范围也越小。
实际上,由于C1 很小(1E-15 量级),Co 不能忽略(1E-12 量级,几PF)。
所以,Cv 变大时,降低槽路频率的作用越来越小,Cv 变小时,升高槽路频率的作用却越来越大。
这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,。
51单片机的时钟电路原理
51单片机的时钟电路原理如下:
1. 外部晶振电路:51单片机的时钟电路主要由一个晶体振荡电路组成,晶体振荡电路由一个晶体谐振器和两个电容组成。
晶体振荡电路产生的正弦信号被送入单片机内部,用于驱动时钟周期。
2. 时钟源选择:51单片机的时钟源可以选择外部晶振电路提供的晶振信号或者内部RC振荡电路提供的振荡信号。
3. 预分频器:51单片机内部有一个12位的预分频器,用于将时钟信号进行分频。
预分频器的分频比可以通过程序设置,可以将时钟信号分频为1、2、4、8、12等倍数,可根据需要选择合适的分频比。
4. 定时器:51单片机内部有一个定时器/计数器,用于实现定时和计数功能。
定时器可以根据程序设置的计数值产生中断信号,以实现定时中断和计数中断功能。
5. 中断控制:51单片机的时钟电路中包含一个中断控制模块,用于实现对定时器中断信号的处理。
中断控制模块可以根据程序的设置,决定是否接受定时器中断信号,以及如何响应中断。
总之,51单片机的时钟电路利用外部晶振电路提供的晶振信号作为时钟源,通过预分频器进行分频,再经过定时器和中断控制模块的处理,最终实现定时和计数功能。
晶振串联电阻一、引言晶振和串联电阻是电子领域中常见的两个概念,它们在电路设计和信号处理中起到重要的作用。
本文将分别介绍晶振和串联电阻的基本概念、工作原理以及在实际应用中的应用场景。
二、晶振1. 晶振的概念晶体振荡器(Crystal Oscillator),简称晶振,是一种利用石英晶体的机械振动产生稳定频率信号的器件。
它是现代电子设备中常用的时钟源,广泛应用于计算机、通信、仪器仪表等领域。
2. 晶振的工作原理晶振利用石英晶体具有压电效应的特性,当施加外加电场或机械力时,石英晶体会发生形变并产生压电荷。
利用这个特性,晶振通过将石英片放置在一个反馈电路中,使其处于正反馈状态,从而实现自激振荡并产生稳定频率的信号。
3. 晶振的分类根据使用频率的不同,晶振可以分为以下几种类型:•常见频率晶振:如4MHz、8MHz等,用于一般的计算机和通信设备。
•高频晶振:如100MHz、200MHz等,用于高性能计算机和无线通信设备。
•低频晶振:如32.768kHz等,用于实时时钟(RTC)和电子表格等低功耗设备。
4. 晶振的应用场景晶振在电子设备中有广泛的应用场景,主要包括:•时钟源:作为计算机、微控制器、单片机等系统的时钟源,提供稳定的定时信号。
•频率合成器:通过多个晶振的组合来生成特定频率的信号。
•PLL锁相环:利用晶振作为参考信号进行频率锁定和倍频运算。
•通信设备:作为射频前端的时钟源,提供稳定的射频信号。
三、串联电阻1. 串联电阻的概念串联电阻是指将多个电阻按照顺序连接在一起,形成一个串联电路。
在串联电路中,电流依次通过每个电阻,而总电压等于各个电阻之间电压的代数和。
2. 串联电阻的计算方法在串联电路中,各个电阻的阻值相加即可得到总阻值。
假设有n个串联电阻,分别为R1、R2、…、Rn,则总阻值Rt = R1 + R2 + … + Rn。
3. 串联电阻的特性•电流相同:在串联电路中,由于只有一条路径供电流通过,因此各个电阻中的电流大小相等。
晶振的基本原理及特性晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。
其中Co,C1,L1,RR是晶体的等效电路。
分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。
可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。
因而能“压控”的频率范围也越小。
实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。
所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。
这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。
采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。
晶振的指标总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。
说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。
一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。
例如:精密制导雷达。
频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。
一个晶振的输出频率随时间变化的曲线如图2。
图中表现出频率不稳定的三种因素:老化、飘移和短稳。
图2 晶振输出频率随时间变化的示意图曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。
表现了晶振的老化。
频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。
单片机没了晶振会怎样?
单片机到底是什幺呢?简单来说,它就是一个微型计算机系统。
然而麻雀虽小,五脏俱全。
单片机内部用到很多和电脑功能相类似的模块,像CPU、内存、并行总线、存储数据的存储器等在单片机中都存在,不过不同的是它的这些部件性能相比电脑要弱很多,当然价钱也相对要低不少。
我们可以用它来做一些控制电器等不是很复杂的工作。
它主要是作为电子产品控制部分的核心部件。
那单片机晶振又是什幺呢?单片机中若是没有了晶振会怎幺样呢?
单片机晶振就是单片机内部电路产生单片机所需的时钟频率的电子元件,单片机晶振提供的时钟频率越高,那幺单片机运行速度就越快,单片机接的一切指令的执行都是建立在其晶振提供的时钟频率。
由此可见单片机中晶振的重要性了。
通常一个单片机系统共用一个晶振,便于各部分保持同步。
有些通讯系统的基频和射频使用不同的晶振,我们可以通过电子调整频率的方法保持同步。
单片机系统中晶振的主要作用就是为系统提供基本的时钟信号,晶振通常与锁相环电路配合使用,来提供系统所需的时钟频率。
如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
晶振的作用与原理一,晶振的作用(1)晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。
(2)晶振还有个作用是在电路产生震荡电流,发出时钟信号.晶振是晶体振荡器的简称。
它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。
高级的精度更高。
有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
(3)晶振在数字电路的基本作用是提供一个时序控制的标准时刻。
数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。
(4)晶振的作用是为系统提供基本的时钟信号。
通常一个系统共用一个晶振,便于各部分保持同步。
有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。
如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
(5)电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。
在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。
石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。
广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。
石英晶振不分正负极, 外壳是地线,其两条不分正负二,晶振的原理;石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。
什么是晶振、晶体,有什么优缺点及区别?为什么单机片离不开晶振晶振一般也叫有源晶振或晶体谐振器,全称是石英晶体振荡器,是一种高精度和高稳定度的振荡器(一种机电器件),用电损耗很小的石英晶体经精密切割磨削并镀上电极焊上引线做成。
通过一定的外接电路,可以生成频率和峰值稳定的正弦波。
单片机在运行的时候,需要一个脉冲信号,做为自己执行指令的触发信号,可以简单的想象为:单片机收到一个脉冲,就执行一次或多次指令。
石英晶振1、易碎:因为精准度的需要,石英晶片需要打磨的非常薄。
在运输过程中易碎。
2、品质不一致:过高的温度(如:焊接)会容易导致点胶的松动,造成坏品。
3、漏气:因石英晶振的精度与镀银有很直接的关系,金属壳的密封不好,容易被氧化掉,导致出现比较大的频率偏差。
石英晶振的DPPM在200-300之间MEMS硅晶振MEMS硅晶振采用的是标准的半导体工艺制程,Die与封装都是全自动化流程。
从本质上解决了石英晶振的所有风险:1、高抗震性:50000G抗震性,石头上摔、用力踩、钳子夹是都不会有问题的。
2、高品质一致性:DPPM为0.15,也就是说一百万片里面有0.15片的缺陷率。
3、高精度:普通芯片里面都带有温度补偿电路,全温精度保证。
Sitime MEMS硅晶振可100%兼容石英晶振,无需任何电路更改,可直接替代。
晶体晶体则是无源晶振的简称,也叫谐振器,只有两个引脚,没有电源电压,需要串接电容才可起振;可以适用于多种电压,不同电压要求的CPU。
价格比较低,在民用产品当中为了降低成品大部分使用的都是无源晶振。
缺点信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路也需要做相应的调整。
一般建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷晶体。
晶振与晶体的区别●晶振是有源晶振的简称,又叫振荡器。
晶体则是无源晶振的简称,也叫谐振器。
●无源晶振(晶体)一般是直插两个脚的无极性元件,需要借助时钟电路才能产生振荡信号。
单片机晶振电路的原理和作用
单片机晶振电路是一种通过晶体谐振的原理来产生一个稳定的频率信号,用于单片机中的时钟信号。
晶振电路由晶振石、电容和晶振接插件等组成。
晶振石具有高Q值、稳定性和频率精度高等特点,其输出信号通常为基频正弦波,频率可以从几千赫兹到数十兆赫兹。
晶振电路的作用就是为单片机提供一个准确、稳定的时钟信号,以便单片机按照预定的指令顺序进行工作。
晶振电路所产生的频率信号是单片机进行计算、存储和控制的基础,它的稳定性和精度直接影响到单片机的性能和工作效果。
因此,晶振电路在单片机系统中具有非常重要的作用。
单片机晶振电路原理及作用_单片机晶振电路设计在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。
电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。
有源晶振有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。
有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。
相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。
有源晶振是右石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。
当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。
压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。
图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC 电路。
在这个电路中,石英晶体相当于一个电感,C2为可变电容器,调节其容量即可使电路进入谐振状态。
该振荡器供电电压为5V,输出波形为方波。
单片机的内部时钟与外部时钟单片机有内部时钟方式和外部时钟方式两种:(1)单片机的XTAL1和XTAL2内部有一片内振荡器结构,但仍需要在XTAL1和XTAL2两端连接一个晶振和两个电容才能组成时钟电路,这种使用晶振配合产生信号的方法是内部时钟方式;(2)单片机还可以工作在外部时钟方式下,外部时钟方式较为简单,可直接向单片机XTAL1引脚输入时钟信号方波,而XTAL2管脚悬空。
晶振的原理及作用晶振是电路中常用用的时钟元件,全称是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。
晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。
在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。
高级的精度更高。
有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。
晶振的作用是为系统提供基本的时钟信号。
通常一个系统共用一个晶振,便于各部分保持同步。
有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。
晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。
如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。
下面我就具体的介绍一下晶振的作用以及原理,晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。
其中Co,C1,L1,RR是晶体的等效电路。
晶振电路图分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。
可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。
因而能“压控”的频率范围也越小。
实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。
所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。
这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。
单片机晶振电路原理及作用
单什机乐阿和有晶振.在叽片机策统里隔振柞用非能応全程叫品体振荡器,他
结合单片机内部皑路产生取片机所需的时钟颇率,m片机品振提供的时钟烦率
越尚,那么巾片机运打速度就魏快.臥片接的一训折令的执行都是建泄在也片机
品振捉供的时榊坝率・
在通常工杵条件下.普通的品振频率绝对将度可达百万分之五十*囱级的粕燃更務。
冇些怖振还可以由外加电压企一定抢闲内调螯蹶率,称为斥控振霸(VCO).晶振用一种能把电能和机械能相兰转化的品休在共振的状态下T th以提供稳定,樁确的匏颇振鶴.
单斤机晶振的作用是为系统捉供基本的时钟信号.通常一个系统扶用一个鼎据,便于体部分保持同歩■有些通JR萊统的奉颇和射颇便用不同的品振、而通过电子课無嫌率的方搓保持同步・
品衣通常耳锚相环电路配含使用,以提供系统所需的时忡烦率。
如果不同予垂统帘要不同臟率的时钟信号.可臥用耳同一个斛振柑连的不同锁相环來提供"
下丽我就共林的介紹一下晶振的柞用以及原埋,骷振一般采用如图la的电容三端式(考毕兹)交流等效振荡电路;宴际的晶振交曲徹电路如图lb,其中氏是用来调节振荡狈率’一般用变容•极骨加上不同的反偏电爪来实现. 这也是压控作用的机理七把品休的等效电曄代替晶体厉如阳ic;其中Co, CL, Lit RR是晶休的等效电路v
(品振电略图〉
分析整个振荡楂路可知,利用h来改变频率是有限的土决宦振荡碱串的整乍
艳路电C-€be, Cce. Cv三个电容串联后和3并联再和门串联亠可M看出:
C1趣小,CoKAi C变化时対整个杷路电容的卄用就越小。
因而能“压控"
的频率范圉也越小°实际上,由于C14R<h(1E-I5 S级屛@不能(1E-12
童齟,几PF).所以,6变人时,阳氐橹路频率的作用越来越小,4变小时, 升窩蜡略频率的柞用却越来越人v这一方而引起压控特性的非线性,压控范
圈越人,非线性就越厉害:另一方商・分给扼荡的反嵋电fK(Cbo I.的电斥)却越来越小,最后导致停振亠通过晶振的原理圏你应该人救了解了崩振的竹用以及匚柞过程了吧.采用泛音次数越岛的晶振,其等效电容C1就越小:因
此频率的变化池由也就越小.
微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如品振、陶瓷谐振槽賂:RC (电阻、电容)振荡器。
一种是皮尔斯振荡器配盘,适用于品振和陶瓷谐振槽略。
另一种为简m的分立RC振荡器。
用万用表测益品体振荡器是否工作的方法:测量两个引脚电爪進否進芯片T 作电圧的一半,比如匸作电压是51叭片机的+5V则是否是2.5V左右。
另外如果用槪了•碰晶体另外一个脚,这个电乐有明显变化.证明是起振了的.
品振的类型冇5MD和DIP型,即贴片和捕脚型・。