单片机最小系统原理图
- 格式:doc
- 大小:71.00 KB
- 文档页数:6
单片机最小系统介绍单片机最小系统主要由电源、复位、振荡电路以及扩展部分等部分组成。
最小系统原理图如图4.1所示。
图4.1最小系统电路图电源供电模块图4.1.1 电源模块电路图对于一个完整的电子设计来讲,首要问题就是为整个系统提供电源供电模块,电源模块的稳定可靠是系统平稳运行的前提和基础。
51单片机虽然使用时间最早、应用范围最广,但是在实际使用过程中,一个和典型的问题就是相比其他系列的单片机,51单片机更容易受到干扰而出现程序跑飞的现象,克服这种现象出现的一个重要手段就是为单片机系统配置一个稳定可靠的电源供电模块。
复位电路图4.1.2 复位电路图单片机的置位和复位,都是为了把电路初始化到一个确定的状态,一般来说,单片机复位电路作用是把一个例如状态机初始化到空状态,而在单片机内部,复位的时候单片机是把一些寄存器以及存储设备装入厂商预设的一个值。
单片机复位电路原理是在单片机的复位引脚RST上外接电阻和电容,实现上电复位。
当复位电平持续两个机器周期以上时复位有效。
复位电平的持续时间必须大于单片机的两个机器周期。
具体数值可以由RC电路计算出时间常数。
复位电路由按键复位和上电复位两部分组成。
(1)上电复位:STC89系列单片及为高电平复位,通常在复位引脚RST上连接一个电容到VCC,再连接一个电阻到GND,由此形成一个RC充放电回路保证单片机在上电时RST脚上有足够时间的高电平进行复位,随后回归到低电平进入正常工作状态,这个电阻和电容的典型值为10K和10uF。
(2)按键复位:按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。
单片机系统里都有晶振,在单片机系统里晶振作用非常大,全程叫晶体振荡器,他结合单片机内部电路产生单片机所需的时钟频率,单片机晶振提供的时钟频率越高,那么单片机运行速度就越快,单片接的一切指令的执行都是建立在单片机晶振提供的时钟频率。
51单片机最小系统原理图接触过单片机的朋友们都时常会听到别人提"最小系统"这个词.那到底什么是最小系统,有怎样设计称上"最小"呢?下面让依依电子来告诉大家:单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,单片机+晶振电路+复位电路,便组成了一个最小系统.但是一般我们在设计中总是喜欢把按键输入、显示输出等加到上述电路中,成为小系统。
应用89C51(52)单片机设计并制作一个单片机最小系统,达到如下基本要求:1、具有上电复位和手动复位功能。
2、使用单片机片内程序存储器。
3、具有基本的人机交互接口。
按键输入、LED 显示功能。
4、具有一定的可扩展性,单片机I/O口可方便地与其他电路板连接。
51单片机学习想学单片机,有一段时间了,自己基础不好,在网上提了许多弱智的问题,有一些问题网友回答了,还有一些为题许多人不屑一顾。
学来学去,一年多过去了,可是还是没有入门,现在我就把我学习中遇到的一些问题和大家分享一下,希望在大虾的帮助下能快速的入门:)在学习之前我在网上打听了一下atmel公司的单片机用的人比较多,avr系列这几年在国内比较流行,但是考虑到avr还是没有51系列用的人多,51系列的许多技术在实践中都已经的到了前人的解决,遇到问题后,有许多高人可以帮助解决,所以这次学习,选用了atmel公司的at89s52,来进行学习。
学习单片机是需要花费时间实践的;学之前我们先准备好所需的东西一、所需硬件at89s52一片;8m晶振一个,30pf 的瓷片电容两个;10uf电解电容一个,10k的电阻一个;万用板(多孔板)一块;其他的器件如电烙铁一把30w的,松香,焊锡若干,如果是第一次学习,不知道这些东西,没关系,以下是它们的照片:Atmel公司生产的at89s52 8m晶振22pf瓷片电容电解电容图1/4 w 10k 的电阻普通的电木万用板好了,有了这些东西,我们就可以把它们组合到一起做成我们的最小系统了:)有了这些东西我们怎么焊接丫?不用着急,过一会我们把原理图给大家画出来大家就会了。
51单片机最小系统原理图51单片机是一种常用的微控制器,它具有体积小、功耗低、性能稳定等特点,因此在嵌入式系统中得到了广泛的应用。
而要搭建一个完整的嵌入式系统,首先需要设计并搭建一个最小系统,本文将介绍51单片机最小系统的原理图设计。
首先,我们需要明确51单片机最小系统的组成部分。
一个完整的最小系统包括51单片机、晶振、复位电路、电源电路、下载电路等几个基本部分。
其中,晶振是单片机工作的时钟信号源,复位电路用于单片机的复位控制,电源电路提供单片机所需的电源,下载电路用于单片机的程序下载。
其次,我们需要根据这几个基本部分设计出相应的原理图。
首先是晶振电路,一般使用的是12MHz的晶振,其原理图是将晶振的两端分别连接到单片机的晶振输入引脚和晶振输出引脚。
接下来是复位电路,复位电路一般由一个电阻和一个电容组成,其原理是通过电容的充放电来实现单片机的复位控制。
然后是电源电路,电源电路一般包括稳压电路和滤波电路,其原理是通过稳压电路将输入的电压稳定在单片机所需的工作电压范围内,并通过滤波电路去除电源中的杂波。
最后是下载电路,下载电路一般由一个串口电平转换芯片和一个串口接口组成,其原理是通过串口电平转换芯片将电脑串口的TTL电平转换成单片机所需的电平,并通过串口接口与单片机相连接。
最后,我们需要将这几个部分的原理图进行整合,设计出完整的51单片机最小系统原理图。
在设计原理图时,需要注意各个部分之间的连接关系,以及引脚的连接方式。
同时,还需要考虑到原理图的布局和美观性,尽量使得原理图清晰易懂,方便后续的调试和维护工作。
总的来说,设计51单片机最小系统原理图是搭建一个完整嵌入式系统的第一步,它直接关系到后续系统的稳定性和可靠性。
因此,在设计原理图时需要认真对待,确保各个部分的连接正确,电路设计合理,从而为后续的系统开发奠定良好的基础。
希望本文的介绍能够对大家有所帮助,谢谢阅读。
2.3单片机最小系统
要使单片机工作起来,最基本的电路的构成为
图2-3-1 AT89S52最小工作系统
1、电源电路:
AT89S51单片机的工作电压范围:4.0V—5.5V,所以通常给单片机外接5V直流电源。
连接方式为VCC(40脚):接电源+5V端VSS(20脚):接电源地端。
本设计方案采用外接12V直流电源,然后通过使用7805稳压芯片,输出5V直流电源,给单片机及其它电路供电。
电源电路如
图2-3-2 电源系统
2、时钟电路:
单片机工作的时间基准,决定单片机工作速度。
时钟电路就是振荡电路,向单片机提供一个正弦波信号作为基准,决定单片机的执行速度。
AT89S51单片机时钟频率范围:0 — 33MHz。
时钟电路连接方式为
图2-3-3 时钟电路
3、复位电路:
确定单片机工作的起始状态,完成单片机的启动过程。
单片机接通电源时产生复位信号,完成单片机启动,确定单片机起始工作状态。
手动按键产生复位信号,完成单片机启动,确定单片机的初始状态。
通常在单片机工作出现混乱或“死机”时,使用手动复位可实现单片机“重启”。
图2-3-4 时钟电路
4、EA/VP(31脚)接+5V
如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。
51单片机最小系统电路图
--------------------------------------------------------------------------------
51单片机最小系统电路图(包括电源供电电路与I/O 扩展及选通电路)
本设计使用的最小系统板是以80C52 单片机为内核,并且具有良好的扩展性。
CPU 外接11.0592MHz 的晶振,主要由74LS373 锁存电路、74LS138 译码电路以及按键、显示器件、ICL7135 及其外围典型电路组成,并用8255 外扩了I/O 接口。
最小系统电路如图1所示。
本电路需外接一个AC220/9V 的变压器,变压器的二次侧通过整流滤波后输入CW7805便可得到+5V 电压,此电压做最小系统的电源。
系统中通过8255外扩了PA、PB、PC共24个I/O口,以便作为系统的输入输出通道。
用74LS138的输出作为各个芯片的译码选择端,除最小系统中使用的Y0~Y3外,还有Y4~Y7可供其它扩展使用。
图最小系统电路图
本文来自: 原文网址:/mcu/51mcu/0084195.html。
C51单片机最小系统的电路原理与制作——吴越1 C51单片机最小系统电路图及电路原理单片机最小系统,是指用最少的元件组成并可工作的单片机系统,相关的资料网上或书店都很多。
图1为一个常见的单片机最小系统电路图。
C51最小系统电路由复位电路、时钟电路组成。
另外还需要DC+5V的电源最小系统才能工作。
(1)复位电路:复位电路在单片机系统中很关键,当程序运行不正常或死机时,就需要进行复位,一般有两种复位方式。
①上电复位:由电容C3和电阻R1串联组成,系统一通电,RST脚(9脚)为高电平,这个高电平持续的时间由电路的RC值来决定。
典型的C51单片机当RST脚的高电平持续两个机器周期以上就将复位,适当组合RC的取值就可以保证可靠的复位。
一般C3取10μF、R1取10K。
也有不同取值的,原则是RC组合要在RST脚上产生2个机器周期以上的高电平。
②手动复位:由电阻R2和开关S组成,R2取值没有严格的要求,一般能把复位脚的电压下拉至0.5V以下即可,可以把R2理解为缓冲电阻或与C3、R1组成防抖动电路,也有不用R2的。
单片机通电启动后,电容C3两端的电压持续充电约为5V,此时电阻R1两端的电压接近于0V,RST脚为低电平,系统进入正常工作状态。
当按下开关S时,开关导通,电容被短路,电容释放之存储的电量。
电容两端的电压从5V降到约等于0V,电阻R1两端的电压上升到约等于5V,RST脚为高电平,系统进入复位状态。
(2)时钟电路:时钟电路由晶振CY和C1、C2组成,一般晶振的取值1.2MHz~24MHz。
典型的晶振取11.0592MHz或12MHz,11.0592MHz适用于串口通讯,12MHz适用于定时控制,C1、C2一般取15pF~50pF。
如果要自己设计单片机系统的PCB板,注意,C1、C2要紧靠晶振CY,并且晶振CY和C1、C2要紧靠C51芯片,以保证振荡器可靠的工作。
系统通电后可以检测一下晶振是否起振。
若起振,可以用示波器观察到XTAL2会输出很漂亮的正弦波波型,也可以用万用表测量(用直流档)XTAL2和地之间的电压,可以看到有2V左右的电压(有效电压值)。
单片机最小系统
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的
系统.
对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.
下面给出一个51单片机的最小系统电路图.
说明
复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让R C组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.
晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)
单片机:一片AT89S51/52或其他51系列兼容单片机
特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.
复位电路:
一、复位电路的用途
单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。
单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。
单片机复位电路如下图:
二、复位电路的工作原理
在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?
在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。
所以可以通过按键的断开和闭合在运行的系统中控制其复位。
开机的时候为什么为复位
在电路图中,电容的的大小是10uF,电阻的大小是10k。
所以根据公式,可以算出电容充
电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。
也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。
这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。
所以在0.1S内,RST 引脚所接收到的电压是5V~1.5V。
在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。
所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。
按键按下的时候为什么会复位
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。
当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。
随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。
根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST引脚又接收到高电平。
单片机系统自动复位。
总结:
1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。
2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。
51单片机最小系统电路介绍
1.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采
用10~30uF,51单片机最小系统容值越大需要的复位时间越短。
2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。
3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好
4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10 k。
设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。
计数值N乘以机器周期Tcy就是定时时间t。
设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。
在每个机器周期的S5P2期间采样T0、T1引脚电平。
当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。
由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。
当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。