第三章 光纤传感系统
- 格式:ppt
- 大小:12.64 MB
- 文档页数:149
光纤传感的原理光纤传感作为一种高精度、高灵敏度的传感技术,在现代科技发展中扮演着重要的角色。
光纤传感的原理主要基于光纤的特殊性质以及光的传播规律。
光纤传感的基本原理是利用光信号在光纤中的传播特性,通过测量光信号的变化来检测和测量被测量对象的参数。
光纤传感系统主要由光源、光纤和光接收器三部分组成。
光源发出一束光信号,这个光信号会经过光纤的全反射作用,沿着光纤的轴向传播。
光纤是一种具有高折射率的细长玻璃管,其内部是由一个个非常薄的核心和一个比核心直径大的外包层组成。
这种结构使得光线在光纤中传播时会一直发生全反射,从而避免光信号的损失。
当被测量对象与光纤产生接触或影响时,光信号会发生改变。
这种改变可以是光强度、相位或频率上的变化。
例如,当光纤传感系统应用于温度测量时,光纤的折射率会随温度的变化而发生变化,从而导致光信号的频率或相位发生变化。
光接收器接收到经过光纤传输的光信号,并将其转化为电信号。
通过对电信号的测量和分析,就可以得到被测量对象的参数信息。
这些参数信息可以是温度、压力、形变、湿度等物理量的变化。
光纤传感的原理有以下几个特点:1. 高灵敏度:由于光纤传感系统可以实时、非接触地对被测量对象进行监测,因此具有很高的灵敏度。
即使是微小的变化也能被精确地检测到。
2. 抗干扰性强:光纤传感系统在传输过程中不受电磁干扰的影响,可以在复杂的环境下工作。
3. 长距离传输:光纤传感系统可以实现长距离的信号传输,光信号的损耗非常小。
4. 多参数测量:光纤传感系统可以通过改变光源的波长、频率或相位等参数,实现对多个参数的测量。
光纤传感技术在许多领域中得到了广泛的应用。
例如,在工业生产中,光纤传感系统可以用于监测机械设备的运行状态、温度、振动等参数,从而实现设备的远程监控和故障诊断。
在医疗领域,光纤传感系统可以用于检测人体的生理参数,如血压、血氧饱和度等,实现对患者的实时监测。
此外,光纤传感技术还可以应用于环境监测、交通管理、安全防护等领域。
第三章光纤振动传感器的研究随着光纤和光电子器件技术研究的不断深化,光纤传感技术得到了突飞猛进的开展。
由于光纤传感器的体积小、质量轻、精度高、响应快、动态范围宽、响应快等优点,并且它具有良好的抗电磁干扰、耐腐蚀性和不导电性,所以在很多领域都应用广泛。
光纤传感器开展到如今,已经可以探测很多的物理量,给人们的生活带来了极大的好处。
其中探测的物理量有电压、电流、加速度、流速、压力、温度、位移、生物医学量及化学量等等。
光纤振动传感器就是这些中的一员。
光纤振动传感器的出现已有30来年的历史,它是测量振动信号的。
最初的光纤振动传感器是采用干预式的构造[2],利用振动产生的光纤应变导致干预仪信号臂的相位发生变化,但这种传感器构造比较复杂,不利于复用。
由于振动在自然界、人们生活中及各个重大工程中普遍存在,所以研究人们对振动的测量非常关注。
本章将对几种常用的光纤振动传感器的构造设计、信号解调方法所存在问题,进展分析与讨论,继而可以更好的设计新的振动传感器,为设计做好准备工作。
3.1几种典型的光纤振动传感器的设计查阅了众多文献资料,归纳了几种典型的光纤振动传感器的构造原理,主要有光强调制型、相位调制型、光纤布拉格光栅波长调制型、偏振态调制型等几种形式。
利用外界因素引起的光纤中光波相位变化来探测各种物理量的传感器,称为相位调制传感型光纤传感器。
由于位相调制传感器具有非常高的灵敏度,它是所有光纤传感器中最为人所知的。
一般地说,这种传感器运用一个相干激光光源和两个单模光纤。
光线被分束后入射到光纤。
假设干扰影响两根相关光纤的其中一根、就会引起位相差,这个位相差可准确地检测出。
位相差可用干预仪测量。
有四种干预仪构造。
它们包括:马赫—泽德尔、迈克尔逊、法布里—帕罗和赛格纳克干预仪,其中马赫—泽德尔和赛格纳克干预仪分别在水听器和陀螺上应用非常广泛。
下面是基于光纤Sagnac干预原理。
A和B是干预仪的两个传感臂,起到传输光的作用。
C是一段被绕成圆环状的光纤,是用来接收或感应外接信息的变化,2 2光纤3dB耦合器被用来分解和合成干预光束。
光纤传感技术在航空航天领域的应用研究第一章绪论随着科技的不断进步,光纤传感技术在航空航天领域的应用越来越广泛。
光纤传感可以实现对航空航天系统的无损监测、快速诊断和智能控制,提高了航空航天系统的安全性、准确性和可靠性。
本文将从光纤传感原理、光纤传感器的种类、光纤传感在航空航天领域的应用及发展前景等方面进行阐述。
第二章光纤传感原理光纤传感利用了光的物理特性,通过在光纤中传播的光束来实现对被测量物理量的测量。
其原理是在光纤中引入一个物理量,当被测量物理量发生变化时,光纤中的传播光波通过这个变化而发生相应的变化,产生光纤输出端的信号响应,从而达到测量目的。
光纤传感技术主要有两种基本的光学响应方式:干涉现象和散射效应。
其中,基于干涉现象的光纤传感器通常采用光纤干涉仪原理,利用两路光束的相位位移差来探测被测量物理量。
而基于散射效应的光纤传感器则利用光纤中的散射重定向来探测被测量物理量。
此外,光纤传感技术还有一些其他的原理和方法,如布里渊散射、拉曼散射、光纤光栅等。
第三章光纤传感器的种类根据光纤传感器的测量原理和应用场景的不同,可以将其分为多种类型。
其中,常见的光纤传感器类型有:1. 光纤光栅传感器:利用光纤光栅结构对光的传播进行调制,实现对温度、压力、应力等多种物理量的测量。
2. 光纤布里渊散射传感器:利用布里渊散射效应实现对温度、应力的测量。
3. 光纤拉曼传感器:利用拉曼散射效应实现对化学成分、温度、压力等多种物理量的测量。
4. 光纤加速度传感器:利用光纤弯曲时对光波传播速度的变化实现加速度的测量。
5. 光纤压电传感器:利用光纤上嵌入的压电材料对压力和应力的测量。
第四章光纤传感在航空航天领域的应用光纤传感技术在航空航天领域有着广泛的应用。
比如:1. 飞机和航空发动机结构的监测和健康管理。
2. 燃气轮机和离心压缩机的叶片疲劳监测。
3. 载荷、气动外形和自由面变形等航空器受力变形的测量。
4. 飞机机载设备内部温度、湿度、气压等气象参数的测量。