小学四年级奥数第30讲 用假设法解题后附答案
- 格式:doc
- 大小:77.00 KB
- 文档页数:12
用假设法解题我国古代数学名著《孙子算经》中有这样的一道应用题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?意思是说:鸡和兔同关在一个笼子里,已知鸡与兔共有35只,鸡脚与兔脚共有94只,问鸡、兔各有多少只?这就是著名的鸡兔同笼问题。
怎样解决这个问题呢?我们通常把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”,这种解决问题的方法就是假设法。
用假设法解题,首先要根据题意去正确地判断应该怎么假设,一般可假设要求的两个或几个未知量相等,或者假设要求的两个未知量是同一种量;其次要能根据所做的假设,注意到数量关系发生了什么变化,怎样从所给的条件与变化了的数量关系的比较重做出适当的调整,从而找到正确的答案。
【例题1】鸡兔同笼,共100个头,320只脚,鸡兔各多少只?答案:60,40思路点拨:【拓展1】(2009年北京“高思”数学思维能力检测试题)在马达加斯的大草原上,环尾狐猴和斑马进行投篮比赛,每只环尾狐投进一球记2分,每只斑马投进一只球记3分,共投进了100个球,共得了220分,那么斑马一共投进了多少个球? 答案:20思路点拨:【例题2】现在有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大、小油桶各多少个? 答案:20,30思路点拨:【拓展2】现有大小塑料袋60个,每个大袋可装苹果5千克,每个小袋可装苹果3千克,小袋比大袋少装苹果60千克。
问大小塑料袋各有多少个? 答案:30,30思路点拨:【例题3】(“希望杯”全国数学大赛试题)小猴和小熊轮流共同完成一批玩具的组装,小猴每天可以完成20件,小熊每天只能完成12件。
它们用8天的时间共组装了112件玩具。
小猴工作了多少天? 答案:2思路点拨:【拓展3】松鼠妈妈采松球,晴天每天可以采20个,雨天每天只能采12个,它一连几天才了112个松球,平均每天14个。
用假设法解题
1、面值2元、5元的人民币共45张,合计135元,面值2元、5元的人民币各是多少张?
2、14张乒乓球台上同时有46个人在进行乒乓球赛,正在进行单、双打的球台各有多少张?
3、一批货物,用小车装载,要用15辆,用大车装只用12辆,每辆小车比大车少装10吨,这批货物有多少吨?
4、一批水泥,用小车装载,要用40辆,用大车装只用20辆,每辆小车比大车少装25吨,这批水泥有多少吨?
5、某陶瓷厂要为商家运送900个陶瓷瓶,双方商定每个运费为1元,如果打碎一个,折各不但不给运费,而且要赔偿4元,结果晕倒目的地后,瓷器厂共得运费800元,求打碎了几个陶瓷花瓶?
6、某此数学竞赛共有10道题,每次对一道得7分,每做错或者不做扣3分,小红参加了这次数学竞赛,得了50分,他作对了多少道题?
7、爷爷种树苗,晴天可以种20棵,雨天只能种12棵,他一连种了112棵树苗,平均每天种14棵,这几天种有几个雨天?
8、老师把140个苹果装在50只大、小篮子里准备分给小朋友,每只大篮子可以装4个,每个小篮子可以装2个,大、小篮子各有几个?
9、某文艺演出出售10元、20元、30元的门票共100张,收入1900元,其中20元和30元的张数相等,每种票各售出多少张?
10、用1元钱买8分邮票和4分邮票,共买了17张,买4分的邮票和8分邮票相差多少张?
11、小东的21次测试成绩全是4分或5分(老师采用5分评分制),总共加起来是100分,他得了多少次5分?。
假设法解题【名师解析】假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
【例题精讲】【例1】有1角、5角硬币共28枚,价值108角,那么1角、5角硬币各有几枚?练习一:1、小明的妈妈买了鸡和兔共33只,脚共有96只。
问鸡、兔各有多少只?2、在一个停车场中,汽车、摩托车共有48辆,其中每辆汽车共有4个轮子,每辆摩托车有2个轮子,这些车共有152个轮子,那么停车场有汽车、摩托车各几辆?【例2】有一元、二元、五元的人民币50张,总面值116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二:1、有3元、5元和7元的电影票400张,一共价值1920元。
其中7元的和5元的张数相等,三种价格的电影票各有多少张?2、有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。
问三种人民币各有多少张?【例3】有一堆黑白棋子,其中黑子个数是白子个数的2倍。
如果从这堆棋子中每次同时取出4个黑子和3个白子,那么取了多少次后,白子余1个,而黑子还剩18个?练习三:1、有一堆黑白棋子,其中黑子个数是白子个数的3倍。
如果从这堆棋子中每次同时取出6个黑子和3个白子,那么取了多少次后,白子余5个,而黑子还剩36个?2、操场上有一群同学。
男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。
操场上原有多少名同学?【例4】将200拆成两个自然数之和,其中一个是17的倍数,另一个是23的倍数,那么两个自然数的积是多少?练习四:1、将2007拆成两个自然数之和,其中一个是17的倍数,另一个是29的倍数,那么两个自然数的差是多少?(答案不唯一)2、将2010拆成两个自然数之和,其中一个是13的倍数,另一个是19的倍数,那么两个自然数的差是多少?【例5】某运输队为商店运送1998套玻璃茶具,按合同规定,每套茶具的运费为1.6元。
第30 讲用假设法解题一、知识要点:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、精讲精练:例1:今有鸡、兔共居一笼,已知鸡头和兔头共35 个,鸡脚与兔脚共94 只。
问鸡、兔各有多少只?练习一1、鸡与兔共有30 只,共有脚70只。
鸡与兔各有多少只?2、鸡与兔共有20 只,共有脚50只。
鸡与兔各有多少只?3、鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?例2:面值是 2 元、5元的人民币共27 张,全计99 元。
面值是 2 元、 5 元的人民币各有多少张?练习二1、孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2、50名同学去划船,一共乘坐11只船,其中每条大船坐 6 人,每条小船坐 4 人。
问大船和小船各几只?3、小明参加猜谜比赛,共20道题,规定猜对一道得 5 分,猜错一道倒扣3 分(不猜按错算)。
小明共得60 分,他猜对了几道?例3:一批水泥,用小车装载,要用45 辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?练习三1、一批货物用大卡车装要16 辆,如果用小卡车装要48 辆。
已知大卡车比小卡车每辆多装 4 吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50 次,如果用小汽车运,要运80 次。
每辆大汽车比小汽车多运 3 吨,这堆黄沙有多少吨?3、一批钢材,用小车装,要用35辆,用大车装只用30 辆,每辆小车比大车少装 3 吨,这批钢材有多少吨?例4:某玻璃杯厂要为商场运送1000 个玻璃杯,双方商定每个运费为 1 元,如果打碎一个,这个不但不给运费,而且要赔偿 3 元。
四年级奥数30及答案一图文百度文库一、拓展提优试题1.今年,小军5岁,爸爸31岁,再过年,爸爸的年龄是小军的3倍.2.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.3.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.4.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用秒.5.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.6.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.7.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.9.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?10.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.11.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是.12.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?13.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.14.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.15.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.【参考答案】一、拓展提优试题1.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.解:父子年龄差是:31﹣5=26(岁),爸爸的年龄是小军的3倍时,小军的年龄是:26÷(3﹣1)=26÷2=13(岁),13﹣5=8(年),答:再过8年,爸爸的年龄是小军的3倍.故答案为:8.【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).2.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.3.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.4.解:列车速度为:(285﹣245)÷(24﹣22)=40÷2,=20(米);列车车身长为:20×24﹣285=480﹣285,=195(米);列车与货车从相遇到离开需:(195+135)÷(20+10),=330÷30,=11(秒).答:列车与货车从相遇到离开需11秒.5.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.6.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.7.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.8.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.9.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.10.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.11.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.解:5=320答:圆形纸片的面积是320;故答案为:320.【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.12.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.13.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.14.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.15.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.。
第30讲用假设法解题一、知识要点:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、精讲精练:例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?练习一1、鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2、鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3、鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?例2:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?练习二1、孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?3、小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。
小明共得60分,他猜对了几道?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?练习三1、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?练习四1、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
小学数学奥林匹克辅导及练习用假设法解应用题(一)(含答案) .小学数学奥林匹克辅导及练习用假设法解应用题(一)(含答案)-.用假设方法解决应用问题(一)有些应用题按照一般的解题思路不易找到正确的解答方法。
题中要求两个或两个以上的未知数量,解题时可以先假设要求的两个或两个以上的未知量相等或先假设要求的一个未知量与题目中的某一已知数量相等,使题意明朗化、简单化。
再按照题里的已知条件进行推算,把假定的加以纠正和调整,从而得到正确答案。
(一)示例指导:例1.小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?分析与解:9元5角=95角假设这35件都是一角硬币,那么总金额应该是35角,比实际95角少了60美分。
这是因为所有的5美分都被视为1角。
如果有一枚5角的硬币,它就少了4角。
如果在60角以下有几个这样的4角,那么就有几个5角的硬币。
(角)(件)(件)答:5角硬币有15枚,1角硬币有20枚。
如果我们假设它们都是50美分,怎么解决呢?学生们,试一试。
例2.某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?分析与解:假设所有1000个玻璃杯均已交付且完好无损,则应支付的运费为:(元)(元)5元,一共扣除105元,所以实际上运费更低:这说明在运输过程中打碎了玻璃杯,每打碎1个,不但不给1元的运费,还要赔偿4元,即打碎一个玻璃杯要从总钱数1000元中扣除打碎的玻璃杯数为:综合算式:A:打碎了21个玻璃杯。
(个)(件)例3.小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?分析与解:两人共得208分,其中小张比小李多得64分。
根据这两个条件可以求出小张和小李各得多少分。
专题30 用假设法解题【理论基础】假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
练习一1.鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2.鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3.鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?分析与解答:求出大车每辆各装多少吨,是解题关键。
如果用36辆小车来运,则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有16×45=720吨。
练习二1.一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2.有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3.一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?面值是2元、5元的人民币共27张,全计99元。
第30讲用假设法解题一、知识要点:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
二、精讲精练:例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?练习一1、鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2、鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3、鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?例2:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?练习二1、孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?3、小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。
小明共得60分,他猜对了几道?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?练习三1、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?练习四1、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
但打碎一只,不仅不给搬运费还要赔5角。
如果运完后共得运费260元,那么,搬运中打碎了多少只?2、某次数学竞赛共20道题,评分标准是每做对一题得5分,每做错一题倒扣1分。
刘亮参加了这次竞赛,得了64分。
刘亮做对了多少道题?3、某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道或不做倒扣4分。
小华在这次竞赛中共得66分,他做对了几道题?例5:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。
其中40元和50元的张数相等,每种票各售出多少张?练习五1、某场球赛售出40元、30元、50元的门票共400张,收入15600元。
其中40元和50元的张数相等,每种门票各售出多少张?2、数学测试卷有20道题,做对一题得7分,做错一题倒扣4分,不做得0分。
红红得了100分,她几道题没做?3、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?三、课后作业。
1、有若干只鸡和兔子,数一数一共有13个头,38只脚。
问鸡兔各有多少只?2、蜘蛛有8条腿,蜻蜓有6条腿。
28只蜘蛛、蜻蜓一共有194只腿,问蜘蛛、蜻蜓各有多少只?3、鸡兔同笼,有13个头,40只脚。
鸡兔各有多少只?4、把一根木头锯断要2分钟,把这根木头锯成4段要多少分钟?5、鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?6、鹤龟同池,鹤比龟多12只,鹤龟的足共72只,求鹤龟各有多少只?7、小刚买回80分邮票和40分邮票共100张,共付出68元,问小刚买回这两种邮票各多少张?各付出多少元?8、摩托车展销会上共有三轮和两轮摩托车58辆,小丽数了数,一共有134各轮子。
请你算一算,三轮和两轮摩托车各有多少辆?9、小红的储蓄罐里有2角和5角的硬币共35枚,共9元1角。
算一算,2角和5角的硬币各有多少枚?10、在知识竞赛中,有10道判断题。
评分规定:每答对一题得2分,答错一题要倒扣一分。
小明同学虽然答了全部的题目,但最后只得了14分,请问:他答错了几题?11、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。
已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要赔成本10元,运后结算时,运出队共得1353元的运费。
问共损坏了多少只暖瓶?12、鸡兔同笼,共有头100个,脚316只。
鸡兔各有多少只?13、有2元和5元的人民币共14张,共计43元,问2元和5元的各有多少张?第三十周用假设法解题答案解析专题简析:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
练习一1,鸡与兔共有30只,共有脚70只。
鸡与兔各有多少只?2,鸡与兔共有20只,共有脚50只。
鸡与兔各有多少只?3,鸡与兔共有100只,鸡脚比兔脚多80只。
鸡与兔各有多少只?【答案】1.兔:(70-2×30)÷(4-2)=5(只)鸡:30-5=25(只)2.鸡有15只,兔5只。
3.兔:(2×100-80)÷(2+4)=20(只)鸡:100-20=80(只)例2:面值是2元、5元的人民币共27张,全计99元。
面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。
练习二1,孙佳有2分、5分硬币共40枚,一共是1元7角。
两种硬币各有多少枚?2,50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。
问大船和小船各几只?3,小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。
小明共得60分,他猜对了几道?【答案】1.5分:(170-80)÷(5-2)=30(枚) 2分:40-30=10(枚)2.大船:(50-4×11)÷(6-4)=3(只)小船:11-3=8(只)3.20-(20×5-60)÷(5+3)=15(道)例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?分析与解答:求出大车每辆各装多少吨,是解题关键。
如果用36辆小车来运,则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量是144÷9=16吨,所以,这批水泥共有16×45=720吨。
练习三1,一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?2,有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。
每辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?3,一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?【答案】1.4×16÷(48-16)×48=96(吨)2.3×50÷(80-50)×80=400(吨)3.3×30÷(35-30)×35=630(吨)例4:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。
结果运到目的地后结算时,玻璃杯厂共得运费920元。
求打碎了几个玻璃杯?分析与解答:假设1000个玻璃杯全部运到并完好无损,应得运费1×1000=1000元,实际上少得1000-920=80元,这说明运输过程中打碎了玻璃杯。
每打碎一个,不但不给运费还要赔偿3元,这样玻璃杯厂就少收入1+3=4元。
又已求出共少收入80元,所以打碎的玻璃杯数为80÷4=20个。
练习四1,搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。
但打碎一只,不仅不给搬运费还要赔5角。
如果运完后共得运费260元,那么,搬运中打碎了多少只?2,某次数学竞赛共20道题,评分标准是每做对一题得5分,每做错一题倒扣1分。
刘亮参加了这次竞赛,得了64分。
刘亮做对了多少道题?3,某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道或不做倒扣4分。
小华在这次竞赛中共得66分,他做对了几道题?【答案】1.(3×1000-2600)÷(3+5)=50(只)2.20-(5×20-64)÷(5+1)=14(道)3.15-(10×15-66)÷(10+4)=9(道)例5:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入7800元。
其中40元和50元的张数相等,每种票各售出多少张?分析与解答:因为“40元和50元的张数相等”,所以可以把40元和50元的门票都看作45元的门票,假设这200张门票都是45元的,应收入45×200=9000元,比实际多收入9000-7800=1200元,这是因为把30元的门票都当作45元来计算了。
因此30元的门票有1200÷(45-30)=80张,40元和50元的门票各有(200-80)÷2=60张。
练习五1,某场球赛售出40元、30元、50元的门票共400张,收入15600元。
其中40元和50元的张数相等,每种门票各售出多少张?2,数学测试卷有20道题,做对一题得7分,做错一题倒扣4分,不做得0分。
红红得了100分,她几道题没做?3,有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。