高中物理动量守恒定律试题经典及解析
- 格式:doc
- 大小:666.00 KB
- 文档页数:14
高考物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s3.甲图是我国自主研制的200mm离子电推进系统,已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力.已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法.【答案】(1)(2)(3)增大S可以通过减小q、U或增大m的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力.【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。
第一章动量守恒定律3 动量守恒定律基础过关练题组一动量守恒的判断1.(经典题)(2024江苏无锡期中联考)如图所示,A、B两物体的质量比m A∶m B=4∶3,它们原来静止在足够长的平板车C上,A、B间有一根被压缩了的弹簧,地面光滑。
当弹簧被突然释放后,A、B组成的系统动量守恒。
则有()A.A、B与C间的动摩擦因数相等B.A、B与C间的动摩擦因数是否相等不确定C.最终稳定时小车向右运动D.A、B、C组成的系统动量守恒2.(2024江苏苏州期中)如图所示,小车放在光滑的水平面上,将系着绳的小球拉开到一定的角度,然后同时放开小球和小车,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统动量守恒C.小球向左摆到最高点时,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或都为零)3.(2024山东济南普高联考)如图所示,A、B两木块紧靠在一起且静止于光滑水平面上,一颗子弹C以一定的速度v0向右从A的左端射入,穿过木块A后进入木块B,最后从B的右端射出,在此过程中,下列叙述正确的是()A.当子弹C在木块A中运动时,A、C组成的系统动量守恒B.当子弹C在木块B中运动时,B、C组成的系统动量守恒C.当子弹C在木块A中运动时,A、B、C组成的系统动量不守恒D.当子弹C在木块B中运动时,A、B、C组成的系统动量不守恒4.(2024广东深圳期中)建筑工地上常用打桩机把桩打入地下。
电动机先把重锤吊起一定的高度,然后由静止释放,重锤打在桩上,接着随桩一起向下运动直到停止。
不计空气阻力,则下列说法中正确的是()A.重锤与桩的撞击过程中,重锤和桩组成的系统机械能守恒B.重锤随桩一起向下运动过程中,重锤和桩组成的系统机械能守恒C.整个运动过程中,重锤和桩组成的系统动量守恒D.整个运动过程中,重锤所受合外力冲量为零题组二两物体组成的系统动量守恒5.(2024河北邢台四校联考)如图所示,现有一个质量为m的小孩站在一辆质量为km的滑板车上,小孩与滑板车一起在光滑的水平路面上以速度v0匀速运动,突然小孩相对地面以速度1110v0向前跳离滑板车,滑板车速度大小变为原来的110,但方向不变,则k为()A.15B.16C.19D.1116.(2024浙江温州期中)如图所示,光滑的水平面上有大小相同、质量不等的小球A、B,小球A以速度v0向右运动时与静止的小球B发生碰撞,碰后A球速度反向,大小为v04,B球的速率为v02,A、B两球的质量之比为()A.3∶8B.8∶3C.2∶5D.5∶27.(教材习题改编)甲、乙两人静止在水平冰面上,突然两人掌心相碰互推对方,互推过程中两人相互作用力远大于冰面对人的摩擦力,若两人与冰面间的动摩擦因数相等,则以下正确的是() A.若m甲>m乙,则在互推的过程中,甲对乙的冲量大于乙对甲的冲量B.无论甲、乙质量关系如何,在互推过程中,甲、乙两人动量变化量大小相等C.若m甲>m乙,则分开瞬间甲的速率比乙的大D.若m甲>m乙,则分开后乙先停下来8.(多选题)如图所示,在水平面上有一质量为M的长木板,其右端固定有一立柱。
选修1高中物理动量守恒定律试题(含答案)一、动量守恒定律选择题1.质量为m、半径为R的小球,放在半径为3R、质量为3m的大空心球内,大球开始静止在光滑水平面上。
当小球从如图所示的位置(两球心在同一水平面上)无初速度沿内壁滚到最低点时,大球移动的距离是()A.2RB.125RC.4RD.34R2.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。
小球在运动过程中除重力和弹力外,另受阻力f(包含摩擦阻力),阻力f大小与速率成正比即f kv=。
则小球在斜面上运动总时间t为()A.12sinv vtgθ+=⋅B.12sinv vtgθ-=⋅C.1212sin2mv mvtv vmg kθ+=+⋅+D.1212sin2mv mvtv vmg kθ-=+⋅-3.如图所示为水平放置的固定光滑平行直轨道,窄轨间距为L,宽轨间距为2L。
轨道处于竖直向下的磁感应强度为B的匀强磁场中,质量分别为m、2m的金属棒a、b垂直于导轨静止放置,其电阻分别为R、2R,现给a棒一向右的初速度v0,经t时间后两棒达到匀速运动两棒运动过程中始终相互平行且与导轨良好接触,不计导轨电阻,b棒一直在宽轨上运动。
下列说法正确的是()A.a棒开始运动时的加速度大小为223B L vRmB .b 棒匀速运动的速度大小为03v C .整个过程中通过b 棒的电荷量为023mv BL D .整个过程中b 棒产生的热量为203mv 4.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 5.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m6.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 223E mED.在A离开竖直墙后,弹簧的弹性势能最大值为37.3个质量分别为m1、m2、m3的小球,半径相同,并排悬挂在长度相同的3根竖直绳上,彼此恰好相互接触.现把质量为m1的小球拉开一些,如图中虚线所示,然后释放,经球1与球2、球2与球3相碰之后,3个球的动量相等.若各球间碰撞时均为弹性碰撞,且碰撞时间极短,不计空气阻力,则m1:m2:m3为()A.6:3:1 B.2:3:1 C.2:1:1 D.3:2:18.如图所示,足够长的光滑水平面上有一质量为2kg的木板B,质量为1kg的木块C叠放在B的右端点,B、C均处于静止状态且B、C之间的动摩擦因数为μ = 0.1。
一、选择题1.如图所示,体积相同的匀质小球A和B并排悬挂,静止时悬线平行,两球刚好接触,悬点到球心的距离均为L,B球悬线右侧有一固定的光滑小铁钉P,O2P=3 4L。
现将A向左拉开60°角后由静止释放,A到达最低点时与B发生弹性正碰,碰后B做圆周运动恰能通过P点的正上方。
已知A的质量为m,取3=1.73,5=2.24,则B的质量约为()A.0.3m B.0.8mC.m D.1.4m B解析:B设A碰前的速度大小为v,碰撞后A、B球的速度分别为v1、v2,B通过最高点时的速度大小为v3,根据机械能守恒定律有mg(L–L cos60°)=12mv2得gLA、B发生弹性正碰,则mv=mv1+m2v212mv2=1221mv+12222m v得v2=22mvm m碰后B上摆到最高点的过程,有12222m v=m2g12L+12223m vB恰好能通过最高点,则m2g=m2234vL解得m2=(455–1)m≈0.8m故选B。
2.假设将来某宇航员登月后,在月球表面完成下面的实验:在固定的竖直光滑圆轨道内部最低点静止放置一个质量为m 的小球(可视为质点),如图所示,当给小球一瞬时冲量I 时,小球恰好能在竖直平面内做完整的圆周运动。
已知圆轨道半径为r ,月球的半径为R ,则月球的第一宇宙速度为( )A 5I Rm rB I R m rC I r m RD 5I rm RA解析:A小球获得瞬时冲量I 的速度为v 0,有00I p mv ∆=-=而小球恰好通过圆周的最高点,满足只有重力提供向心力2v mg m r=从最低点到最高点由动能定理可知220112=22mg r mv mv -⨯-解得22=5I g rm 月球的近地卫星最小发射速度即为月球的第一宇宙速度,满足21=v m g m R''解得15I Rv m r=故A 正确,BCD 错误。
故选A 。
3.人和冰车的总质量为M ,另一木球质量为m ,且M ∶m =31∶2。
高中物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d rr α-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
1.下列说法中正确的是 ( 填正确答案标号.选对 1 个得 3 分,选对 2 个得 4 分,选对 3 个得 6 分;每选错1 个扣 3 分,最低得分为0 分 )【答案】 C A .卢瑟福提出原子的核式结构模型建立的基础是 α粒子的散射实验【解析】B .发现天然放射现象的意义在于使人类认识到原子核具有复杂的结构v 2 v 0M ,选项 C 正确.在用气垫导轨和光电门传感器做验证动量守恒定律的实验中,在两滑块相碰的端面上装不装上弹性碰试题分析:根据动量守恒定律可知:Mv 0 (Mm)v 2 mv 1 ,解得: mCv 2v 1撞架,不会影响动量是否守恒D .原子核内的某一核子与其他核子间都有核力作用考点:动量守恒定律 .E .氢原子的核外电子,在由离核较远的轨道自发跃迁到离核较近的轨道的过程中,放出光子,电子动能 4.质量为 m 的小球 P 以大小为 v 的速度与质量为3m 的静止小球 Q 发生正碰, 碰后小球 P 以大小为v增加,原子的电势能增加【答案】 ABC 度被反弹,则正碰后小球 Q 的速度大小是()【解析】A . 2vB.vC.vD.vA 正确;发现天然放射试题分析:卢瑟福提出原子的核式结构模型建立的基础是 α 粒子的散射实验,选项2 3 6现象的意义在于使人类认识到原子核具有复杂的结构,选项 B 正确;在用气垫导轨和光电门传感器做验证【答案】 B 动量守恒定律的实验中,在两滑块相碰的端面上装不装上弹性碰撞架,不会影响动量是否守恒,因为滑块【解析】和导轨间无摩擦力,选项C 正确;核力与万有引力、库伦力的性质不同,核力是短程力,作用范围在1.5 试 题 分 析 : 小 球 P 和 Q 的 正 碰 满 足 动 量 守 恒 定 律 ( 设 小 球 P 的 运 动 方 向 为 正 方 向 ),× 10-15 m ,原子核的半径数量级在 10-15 m ,所以核力只存在于相邻的核子之间,选项D 错误;氢原子的核外mv 0mv3m v ,解得: vv,故选 B 。
高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小? (2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ; (2)物体A 在NP 上运动的时间为0.5s (3)物体A 最终离小车左端的距离为3316m 【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N (2)物体A 在平台上运动过程中 μm A g=m A a L=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去) (3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止 (m A + m C )v 2= m A v 1 小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4 (m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4 此过程中A 相对小车的位移大小为L 2,则222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.2.如图所示,一辆质量M=3 kg 的小车A 静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B ,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p =6J ,小球与小车右壁距离为L=0.4m ,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m 【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得 mv 1-Mv 2=022121122P E mv Mv =+ 代入数据解得:v 1=3m/s v 2=1m/s (2)根据动量守恒和各自位移关系得12x xm M t t=,x 1+x 2=L 代入数据联立解得:24Lx ==0.1m 考点:动量守恒定律;能量守恒定律.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m 和.不计重力.(1)求A 在电场中的运动时间t ,(2)若B 的电荷量q =Q ,求两质点相互作用能的最大值E pm (3)为使B 离开电场后不改变运动方向,求B 所带电荷量的最大值q m 【答案】(1)(2)145QE 0d (3)Q 【解析】 【分析】 【详解】解:(1)由牛顿第二定律得,A 在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)2+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。
(1)写衰变方程;(2)求出反冲核钋的速度;(计算结果用题中字母表示)(3)求出这一衰变过程中的质量亏损。
(计算结果用题中字母表示)【答案】(1)222218486842Rn Po He →+;(2)0mv v M=-,负号表示方向与α离子速度方向相反;(3)()2022M m mv m Mc+∆=【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反应方程式为222218486842Rn Po+He →(2)核反应过程动量守恒,以α离子的速度方向为正方向 由动量守恒定律得00mv Mv +=解得0mv v M=-,负号表示方向与α离子速度方向相反 (3)衰变过程产生的能量()222011222M m mv E mv Mv M+∆=+=由爱因斯坦质能方程得2E mc ∆=∆解得()2022M m mv m Mc+∆=7.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求: (1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)2138mE mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv hs M g= 【解析】 【分析】 【详解】试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得 mv 0=m +MV ①解得②系统的机械能损失为 ΔE =③由②③式得 ΔE =④(2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥ 由②⑤⑥得 S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.8.两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图所示.C 与B 发生碰撞并立即结成一个整体D .在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连.过一段时间,突然解除锁定(锁定及解除锁定无机械能损失).已知A 、B 、C 三球的质量均为m .求: (1)弹簧长度刚被锁定后A 球的速度.(2)在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.【答案】(1)013v (2)20136mv 【解析】(1)设C 球与B 球发生碰撞并立即结成一个整体D 时,D 的速度为v 1,由动量守恒有: mv 0=(m+m )v 1当弹簧压缩至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒有:2mv 1=5mv 2 由两式得A 的速度为:v 2=15v 0 (2)设弹簧长度被锁定后,贮存在弹簧中的势能为E p ,由能量守恒有:2212112522p mv mv E ⋅=⋅+ 撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D 的动能,设D 的速度为v 3,则有:()23122p E m v =以后弹簧伸长,A 球离开档板P ,并获得速度,当弹簧再次恢复到原长时,A 的速度最大,由动量守恒定律及能量关系可知:345232mv mv mv =+ ;2245113222p E mv mv =⋅+⋅解得:4043520v v =(3)当A 、D 的速度相等时,弹簧压缩到最短时,此时D 球速度最小. 设此时的速度为v 6,由动量守恒定律得:2mv 3=5mv 6 设此使弹性势能为E P ′,由能量守恒定律得:()()222360111=252220P E m v m v mv '-=9.如图所示,A 为有光滑曲面的固定轨道,轨道底端的切线方向是水平的,质量140kg m =的小车B 静止于轨道右侧,其上表面与轨道底端在同一水平面上,一个质量220kg m =的物体C 以2.0/m s 的初速度从轨道顶端滑下,冲上小车B 后经过一段时间与小车相对静止并一起运动。