相似三角形性质与判定()
- 格式:ppt
- 大小:291.01 KB
- 文档页数:13
EADC 1 相似三角形的性质与判定知识要点一、相似的概念①如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽); ②如果两个三角形形状相同,但大小不一定相等,那么这两个三角形相似。
二、相似三角形的性质①相似三角形的对应角相等。
②相似三角形的对应边成比例(对应边之比称为相似比)。
③相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
④相似三角形的周长比等于相似比。
⑤相似三角形的面积比等于相似比的平方。
三、相似三角形的判定①(SAS )如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)②(SSS )如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)③(AA )如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
1、如图,AED ∆∽ABC ∆,其中B ∠=∠1,则()()ABBC AD ___(___)___==。
2、一个三角形三边长之比为6:5:4,三边中点连线组成的三角形的周长为cm 30,则原三角形最大边长为多少?3、如果ABC ∆∽C B A '''∆,相似比为2:3,若它们的周长的差为40厘米,则C B A '''∆的周长为多少厘米?4、ABC ∆中,DE ∥BC 交AB 于D 交AC 于E ,若四边形DECB 的面积为ADE ∆面积的3倍,求BC DE :的值。
C A B A E F G BDC5、如图,在ABC Rt ∆中,CD 为斜边AB 上的高,且6=AC 厘米,4=AD 厘米,求AB 与BC 的长。
6、已知在ABC ∆中,D 、E 分别为AB 、AC 的点,且DE ∥BC ,求证:ANAMON OM =。
教师: 学生: 时间: 年__月__日 段一、授课目的与考点分析:相似三角形的判断与性质1、 相似三角形的概念(1) 对应角相等,对应边成比例的三角形,叫做相似三角形。
相似用符号“∽”表示 读作“相似于” 。
(2) 相似三角形对应角相等,对应边成比例。
(3) 相似三角形对应边的比叫做相似比(或相似系数)。
(4) 全等三角形是相似比为1的相似三角形,二者的区别在于全等要求对应边相等,而相似要求对应边成比例。
(5) 相似三角形的等价关系①反身性: 对于任一∆ABC,有∆ABC ∽∆ABC 。
②对称性: 若∆ABC ∽∆CBA,则∆CBA ∽∆ABC 。
③ 传递性: 若∆ABC ∽∆CBA,且∆CBA ∽∆CBA,则∆ABC ∽∆CBA 。
2、 三角形相似的判定方法(1) 定义法:对应角相等,对应边成比例的两个三角形相似。
(2) 平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3) 判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。
简述为两角对应相等两三角形相似。
(4) 判定定理2如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为两边对应成比例且夹角相等,两三角形相似。
(5) 判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为三边对应成比例两三角形相似。
(6) 判定直角三角形相似的方法①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中 斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图 Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下:1.2AD BD DC =∙ 2. 2AB BD DC =∙ 3. 2AC CD BC =∙注 由上述射影定理还可以证明勾股定理。
三角形的相似性质与判定三角形是平面几何中的基本图形,具有相似性质的三角形在数学和实际应用中起着重要的作用。
本文将探讨三角形的相似性质以及如何判定两个三角形是否相似。
一、相似三角形的定义与性质相似三角形是指具有相同的形状但大小不一的三角形。
它们的边长之比相等,并且对应角度相等。
考虑两个三角形ABC和DEF,若存在一个比值k使得AB/DE=BC/EF=AC/DF=k,则称这两个三角形相似。
相似三角形有以下性质:1. 对应角度相等:∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边长比例相等:AB/DE = BC/EF = AC/DF = k。
3. 对应边长比例相等的性质也可以表达为:AB/BC = DE/EF =AC/DF = 1/k。
二、判定三角形相似的方法1. 三边对应角相等法(SAS法):如果两个三角形的两条边的比值相等,并且这两个边夹角相等,那么这两个三角形相似。
根据这个方法,可以判定两个三角形是否相似,但需要注意两个三角形的顶点要对应一致。
2. 角-角-角(AAA)法:如果两个三角形的三个角度分别相等,那么这两个三角形相似。
由于一个三角形的内角和为180度,所以只需知道两个角度相等就可以推断出第三个角度相等。
但是需要注意,AAA法只能说明两个三角形是相似的可能性,还需要验证其他条件。
3. 角-边-角(ASA)法:如果两个三角形的一对角度相等,并且夹在两条相等边之间的夹角也相等,那么这两个三角形相似。
4. 边-角-边(SAS)法:如果两个三角形的一对边比值相等,并且两条边之间夹角相等,那么这两个三角形相似。
三、相似三角形的应用1. 比例定理:相似三角形的边长比值等于对应边上的线段比值。
例如,若三角形ABC与三角形DEF相似,则有AB/DE = BC/EF =AC/DF。
2. 测量不可达长度:当实际中无法直接测量到物体的长度时,可以利用相似三角形的性质来计算。
通过测量已知长度的物体与其相似三角形的对应边长,再利用比例关系计算出不可达长度。
相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。
在几何学中,相似三角形具有一些特定的性质和判定方法。
本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。
一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。
具体而言,如果两个三角形的对应角分别相等,则它们是相似的。
记为AA相似性质。
2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。
记为SSS相似性质。
3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。
记为SAS相似性质。
二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。
即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。
2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。
3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。
三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。
已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。
根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。
根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。
由此得出结论,三角形ABC和三角形DEF是相似的。
儒洋教育学科教师辅导讲义一.知识梳理【相似三角形的判定】要点1:相似三角形的判定定理(相似三角形与全等三角形判定方法的联系)要点2:常见的相似三角形的解题思路:(1)、深刻理解并掌握“平行截比例”、“平行截相似”、“比例出平行”等平行与相似的关系;(2)、增强识图能力,能够从已知图形中找出全部相似三角形,从中列出所需比例式;(3)、确定“中间比”,“中间积”,方法是找到两组有联系的比例式或两对相似三角形;(4)、准确完成等积式与比例式的互化,并可以依据图形变化比例式;(5)、没有平行怎么办?运用相似三角形的判定定理,或添加平行线;(6)、一对相似三角形可写出一个连比例,应择需而用或同时运用;(7)、添辅助线要能够达到“一线两相似”,“一线两比例”并能与其它知识兼顾,这是辅助线特征“一举两得”在相似形中的体现;(8)、熟悉下图中形如“A”型,“X”型,“子母型”等相似三角形例题讲解:例1:基础训练1. 如图,BD 、CE 是△ABC 的两条高,BD 、CE 相交于O ,则下列结论不正确的是( ) (A )△ADE∽△ABC (B )△DOE∽△COB (C )△BOE∽△C OD (D )△BOE∽△BDE2. 如图,O 是△ABC 的重心,29cm S ABC =∆,则BCO S ∆= .3. 如图在矩形ABCD 中,AB=2,CB=1,E 是DC 上一点,∠DAE=∠BAC,则EC 的长为 .图相关练习:1. D 、E分别在△ABC 的边BA 、BC 上,BD=1.5,DA=0.5,BE•BC=3,∠A+∠B=︒135 则∠BDE=度. 2. 如图,Rt△ABC 中,∠ACB=︒90,点E 是BC 的延长线的一点,EF⊥AB 于F,∠CGB=∠A.求证:CG•BE=EG•BG.3.△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.OED CBA4.如图,D 为△ABC 内一点,E 为△ABC 外一点,且满足AEACDE BC AD AB ==,求证:①△ABD∽△ACE;②∠ABD=∠ACE.5.如图,点O 是ABC △的垂心(垂心即三角形三条高所在直线的交点),联结AO 交CB 的延长线于点D ,联结CO 交AB 的延长线于点E ,联结DE. 求证:ODE ∆∽OCA ∆.【相似三角形的性质】要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例要点2:相似三角形的性质定理:相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方要点3例题讲解:例1:基础训练1. 如图△ABC 中,中线AE 、CD 相交于G ,则AG C S ∆∶DEG S ∆= .2. 如图ABC 中,G 是重心,AG 的延长线交BC 于D ,过点G 作GF∥AC,交BC 于F ,则DGF S ∆∶DAC S ∆= .3. Rt△ABC,∠ACB=︒90,AC=3,BC=4,正方形DEFG 内接于△ABC,则正方形的边长为 .4. 如图平行四边形ABCD 中,E 为CD 上一点,DE∶CE=2∶3,连结AE 、BE 、BD ,且AE 、BD 相交于点F ,则DEF S ∆∶BAF S ∆ 为( )(A )2∶3 (B )2∶5 (C )4∶25 (D )4∶9相关练习:1. 如图,已知梯形ABCD 的周长为16厘米,上底CD=3厘米,下底AB=7厘米,分别延长AD 和BC 交于点P ,求△PCD 的周长.2. 如图,在梯形ABCD 中,AB∥CD,ODC S ∆∶OBA S ∆=1∶4.求ODC S ∆∶OBC S ∆的值.(1题图) (2题图) (3题图)(4题图)强化练习:1. 如图,在ABC △中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作AF ∥BC 交ED 的延长线于点F ,联结AE CF ,. 求证:(1)四边形AFCE 是平行四边形;(2)AE CE BE FG ⋅=⋅.2. 如图,在Rt ABC ∆中,90ACB ︒∠=,CD AB ⊥,垂足为点D ,E 、F 分别是AC 、BC 边上的点,且13CE AC =,13BF BC =.(1)求证:AC CDBC BD =; (2)求EDF ∠的度数.3.已知:如图,△ABC 中M 、E 分别是AC 、AB 上的点,ME 、CB 延长线交于一点D ,且ED EM ACBC=。
相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。
本文将介绍相似三角形的判定方法以及相似三角形的一些性质。
一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。
当两个三角形的对应角度相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。
2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。
当两个三角形的对应边长成比例时,这两个三角形是相似的。
具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。
当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。
二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。
如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例性质相似三角形的对应边成比例。
如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。
3. 高度与边成比例性质相似三角形的对应边上的高度成比例。
如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。
4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。
如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。
5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。
知识点:相似三角形1、相似三角形1)概念:若是两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形必然相似。
两个等腰直角三角形必然相似。
两个等边三角形必然相似。
两个直角三角形和两个等腰三角形不必然相似。
补充:关于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);2)性质:两个相似三角形中,对应角相等、对应边成比例。
3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC ∽△DEF。
相似比为k。
4)判定:①概念法:对应角相等,对应边成比例的两个三角形相似。
②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所组成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:若是一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:若是一个三角形的两条边和另一个三角形的两条边对应成比例,而且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:若是一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。
○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,而且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有普遍的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.2.(2022秋•道外区期末)下列三角形一定相似的是()A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③5.(2022秋•襄都区校级期末)下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是()A.B.C.2D.3 7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是()A.2:3B.4:9C.9:4D.16:81 8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是()A.1B.2C.3D.49.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为cm2.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE =4,则BC=.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为cm2.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.。
A 'B 'C 'CBAA 'B 'C 'CB A相似三角形的性质和判定 一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”。
2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”。
三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比) 。
3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比。
如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C B A图(1)H 'H AB C C 'B 'A '图(2)D 'D A 'B 'C 'C B A图(3)A 'B 'C 'CBAH 'HA BC C 'B 'A '如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).4.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++. 5.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△. 图4图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似。
相似三角形的性质(经典全面)相似三角形的性质及判定一、相似的有关概念相似形是指具有相同形状的图形,但大小不一定相同。
相似图形之间的互相变换称为相似变换。
二、相似三角形的概念相似三角形是指对应角相等,对应边成比例的三角形。
用符号XXX表示,例如△ABC∽△A B C。
三、相似三角形的性质1.对应角相等:如果△ABC与△A B C相似,则有A A,B B,C C。
2.对应边成比例:如果△ABC与△A B C相似,则有AB/BC=AC/A C=BC/B C=k(k为相似比)。
3.对应边上的中线、高线和对应角的平分线成比例,都等于相似比。
例如,如果AM是△ABC中BC边上的中线,A M是△A B C中B C边上的中线,则有AM/A M=k。
如果AH是△ABC中BC边上的高线,A H是△A B C中B C边上的高线,则有AH/A H=k。
如果AD是△ABC中BAC的角平分线,A D是△A B C中B A C的角平分线,则有AD/A D=k。
4.相似三角形周长的比等于相似比。
如果△ABC与△A B C相似,则有AB+BC+AC/A B+B C+A C=k。
ABCD中间观察,比例式中的比AD和BC中的三个字母A,B,C恰为△ABC的顶点;比CD和EF中的三个EFDC字母D,E,F恰为△DEF的三个顶点.因此只需证欲证△ABC∽△DEF.证明比例中项式或倒数式或复合式的方法,可以运用“三点定形法”,也可以利用“分离比例中项法”或“分离倒数式法”或“分离复合式法”.由于在运用三点定形法时,可能会遇到三点共线或四点中没有相同点的情况,此时可以考虑使用等线、等比或等积进行变换,然后再使用三点定形法来寻找相似三角形。
这种方法被称为等量代换法。
在证明比例式时,常常会用到中间比。
证明比例中项式通常涉及与公共边有关的相似问题。
这类问题的典型模型是射影定理模型,需要熟练掌握和透彻理解其特征和结论。
证明倒数式往往需要先进行变形,将等式的一边化为1,另一边化为几个比值的形式,然后对比值进行等量代换,进而证明之。
相似三角形的性质与判定相似三角形是初中数学中的一个重要概念,它在几何学知识体系中有着重要的地位。
相似三角形是指两个或更多个三角形在形状上相似的特殊三角形。
它们的边长比例相等,对应的角度也相等。
通过研究相似三角形的性质和判定条件,我们可以在解决实际问题时更好地应用相似三角形的概念。
首先,我们来介绍一些相似三角形的性质。
相似三角形具有以下性质:1. 对应角相等性质。
如果两个三角形的对应角相等,那么它们是相似三角形。
具体而言,如果两个三角形的三个角分别相等,那么它们一定是相似三角形。
这是相似三角形的性质中最重要的一条。
2. 对应边比例相等性质。
如果两个三角形的对应边的长度比例相等,那么它们是相似三角形。
具体而言,如果两个三角形的三条边的对应长度比例相等,那么它们一定是相似三角形。
这个性质可以直接从三角形的定义和角相等性质推导出来。
其次,我们来介绍一些相似三角形的判定条件。
判定两个三角形是否相似主要有以下几种方法:1. AA 判定法。
如果两个三角形的两个角分别相等,那么它们一定是相似三角形。
2. SSS 判定法。
如果两个三角形的三个边的长度比例相等,那么它们一定是相似三角形。
3. SAS 判定法。
如果两个三角形的一个角相等,而且两个边的长度比例相等,那么它们一定是相似三角形。
4. 等腰三角形判定法。
如果两个三角形的两条边长比例相等且夹角相等,那么它们一定是相似三角形。
相似三角形的性质和判定条件在解决实际问题时非常有用。
例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量实际的距离和角度,计算出高楼的高度。
又如,在地图上测量两个城市之间的直线距离时,我们可以利用相似三角形的判定条件,通过测量两个城市之间的实际距离和角度,计算出直线距离。
这些都是利用相似三角形的性质和判定条件解决实际问题的典型例子。
总的来说,相似三角形是一个重要的几何概念,它涉及到对角、边长比例的研究。
相似三角形的性质和判定条件在解决实际问题时非常有用,能够帮助我们计算出实际的距离和角度,解决实际问题。
相似三角形的判定与性质1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:)例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.2、全等与相似的类比:3、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。