相似三角形性质与判定()
- 格式:ppt
- 大小:291.01 KB
- 文档页数:13
EADC 1 相似三角形的性质与判定知识要点一、相似的概念①如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽); ②如果两个三角形形状相同,但大小不一定相等,那么这两个三角形相似。
二、相似三角形的性质①相似三角形的对应角相等。
②相似三角形的对应边成比例(对应边之比称为相似比)。
③相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
④相似三角形的周长比等于相似比。
⑤相似三角形的面积比等于相似比的平方。
三、相似三角形的判定①(SAS )如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)②(SSS )如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)③(AA )如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
1、如图,AED ∆∽ABC ∆,其中B ∠=∠1,则()()ABBC AD ___(___)___==。
2、一个三角形三边长之比为6:5:4,三边中点连线组成的三角形的周长为cm 30,则原三角形最大边长为多少?3、如果ABC ∆∽C B A '''∆,相似比为2:3,若它们的周长的差为40厘米,则C B A '''∆的周长为多少厘米?4、ABC ∆中,DE ∥BC 交AB 于D 交AC 于E ,若四边形DECB 的面积为ADE ∆面积的3倍,求BC DE :的值。
C A B A E F G BDC5、如图,在ABC Rt ∆中,CD 为斜边AB 上的高,且6=AC 厘米,4=AD 厘米,求AB 与BC 的长。
6、已知在ABC ∆中,D 、E 分别为AB 、AC 的点,且DE ∥BC ,求证:ANAMON OM =。
教师: 学生: 时间: 年__月__日 段一、授课目的与考点分析:相似三角形的判断与性质1、 相似三角形的概念(1) 对应角相等,对应边成比例的三角形,叫做相似三角形。
相似用符号“∽”表示 读作“相似于” 。
(2) 相似三角形对应角相等,对应边成比例。
(3) 相似三角形对应边的比叫做相似比(或相似系数)。
(4) 全等三角形是相似比为1的相似三角形,二者的区别在于全等要求对应边相等,而相似要求对应边成比例。
(5) 相似三角形的等价关系①反身性: 对于任一∆ABC,有∆ABC ∽∆ABC 。
②对称性: 若∆ABC ∽∆CBA,则∆CBA ∽∆ABC 。
③ 传递性: 若∆ABC ∽∆CBA,且∆CBA ∽∆CBA,则∆ABC ∽∆CBA 。
2、 三角形相似的判定方法(1) 定义法:对应角相等,对应边成比例的两个三角形相似。
(2) 平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3) 判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。
简述为两角对应相等两三角形相似。
(4) 判定定理2如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为两边对应成比例且夹角相等,两三角形相似。
(5) 判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为三边对应成比例两三角形相似。
(6) 判定直角三角形相似的方法①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中 斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图 Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则有射影定理如下:1.2AD BD DC =∙ 2. 2AB BD DC =∙ 3. 2AC CD BC =∙注 由上述射影定理还可以证明勾股定理。
三角形的相似性质与判定三角形是平面几何中的基本图形,具有相似性质的三角形在数学和实际应用中起着重要的作用。
本文将探讨三角形的相似性质以及如何判定两个三角形是否相似。
一、相似三角形的定义与性质相似三角形是指具有相同的形状但大小不一的三角形。
它们的边长之比相等,并且对应角度相等。
考虑两个三角形ABC和DEF,若存在一个比值k使得AB/DE=BC/EF=AC/DF=k,则称这两个三角形相似。
相似三角形有以下性质:1. 对应角度相等:∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边长比例相等:AB/DE = BC/EF = AC/DF = k。
3. 对应边长比例相等的性质也可以表达为:AB/BC = DE/EF =AC/DF = 1/k。
二、判定三角形相似的方法1. 三边对应角相等法(SAS法):如果两个三角形的两条边的比值相等,并且这两个边夹角相等,那么这两个三角形相似。
根据这个方法,可以判定两个三角形是否相似,但需要注意两个三角形的顶点要对应一致。
2. 角-角-角(AAA)法:如果两个三角形的三个角度分别相等,那么这两个三角形相似。
由于一个三角形的内角和为180度,所以只需知道两个角度相等就可以推断出第三个角度相等。
但是需要注意,AAA法只能说明两个三角形是相似的可能性,还需要验证其他条件。
3. 角-边-角(ASA)法:如果两个三角形的一对角度相等,并且夹在两条相等边之间的夹角也相等,那么这两个三角形相似。
4. 边-角-边(SAS)法:如果两个三角形的一对边比值相等,并且两条边之间夹角相等,那么这两个三角形相似。
三、相似三角形的应用1. 比例定理:相似三角形的边长比值等于对应边上的线段比值。
例如,若三角形ABC与三角形DEF相似,则有AB/DE = BC/EF =AC/DF。
2. 测量不可达长度:当实际中无法直接测量到物体的长度时,可以利用相似三角形的性质来计算。
通过测量已知长度的物体与其相似三角形的对应边长,再利用比例关系计算出不可达长度。
相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。
在几何学中,相似三角形具有一些特定的性质和判定方法。
本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。
一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。
具体而言,如果两个三角形的对应角分别相等,则它们是相似的。
记为AA相似性质。
2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。
记为SSS相似性质。
3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。
具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。
记为SAS相似性质。
二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。
即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。
2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。
3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。
即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。
三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。
已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。
根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。
根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。
由此得出结论,三角形ABC和三角形DEF是相似的。
儒洋教育学科教师辅导讲义一.知识梳理【相似三角形的判定】要点1:相似三角形的判定定理(相似三角形与全等三角形判定方法的联系)要点2:常见的相似三角形的解题思路:(1)、深刻理解并掌握“平行截比例”、“平行截相似”、“比例出平行”等平行与相似的关系;(2)、增强识图能力,能够从已知图形中找出全部相似三角形,从中列出所需比例式;(3)、确定“中间比”,“中间积”,方法是找到两组有联系的比例式或两对相似三角形;(4)、准确完成等积式与比例式的互化,并可以依据图形变化比例式;(5)、没有平行怎么办?运用相似三角形的判定定理,或添加平行线;(6)、一对相似三角形可写出一个连比例,应择需而用或同时运用;(7)、添辅助线要能够达到“一线两相似”,“一线两比例”并能与其它知识兼顾,这是辅助线特征“一举两得”在相似形中的体现;(8)、熟悉下图中形如“A”型,“X”型,“子母型”等相似三角形例题讲解:例1:基础训练1. 如图,BD 、CE 是△ABC 的两条高,BD 、CE 相交于O ,则下列结论不正确的是( ) (A )△ADE∽△ABC (B )△DOE∽△COB (C )△BOE∽△C OD (D )△BOE∽△BDE2. 如图,O 是△ABC 的重心,29cm S ABC =∆,则BCO S ∆= .3. 如图在矩形ABCD 中,AB=2,CB=1,E 是DC 上一点,∠DAE=∠BAC,则EC 的长为 .图相关练习:1. D 、E分别在△ABC 的边BA 、BC 上,BD=1.5,DA=0.5,BE•BC=3,∠A+∠B=︒135 则∠BDE=度. 2. 如图,Rt△ABC 中,∠ACB=︒90,点E 是BC 的延长线的一点,EF⊥AB 于F,∠CGB=∠A.求证:CG•BE=EG•BG.3.△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.OED CBA4.如图,D 为△ABC 内一点,E 为△ABC 外一点,且满足AEACDE BC AD AB ==,求证:①△ABD∽△ACE;②∠ABD=∠ACE.5.如图,点O 是ABC △的垂心(垂心即三角形三条高所在直线的交点),联结AO 交CB 的延长线于点D ,联结CO 交AB 的延长线于点E ,联结DE. 求证:ODE ∆∽OCA ∆.【相似三角形的性质】要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例要点2:相似三角形的性质定理:相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方要点3例题讲解:例1:基础训练1. 如图△ABC 中,中线AE 、CD 相交于G ,则AG C S ∆∶DEG S ∆= .2. 如图ABC 中,G 是重心,AG 的延长线交BC 于D ,过点G 作GF∥AC,交BC 于F ,则DGF S ∆∶DAC S ∆= .3. Rt△ABC,∠ACB=︒90,AC=3,BC=4,正方形DEFG 内接于△ABC,则正方形的边长为 .4. 如图平行四边形ABCD 中,E 为CD 上一点,DE∶CE=2∶3,连结AE 、BE 、BD ,且AE 、BD 相交于点F ,则DEF S ∆∶BAF S ∆ 为( )(A )2∶3 (B )2∶5 (C )4∶25 (D )4∶9相关练习:1. 如图,已知梯形ABCD 的周长为16厘米,上底CD=3厘米,下底AB=7厘米,分别延长AD 和BC 交于点P ,求△PCD 的周长.2. 如图,在梯形ABCD 中,AB∥CD,ODC S ∆∶OBA S ∆=1∶4.求ODC S ∆∶OBC S ∆的值.(1题图) (2题图) (3题图)(4题图)强化练习:1. 如图,在ABC △中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作AF ∥BC 交ED 的延长线于点F ,联结AE CF ,. 求证:(1)四边形AFCE 是平行四边形;(2)AE CE BE FG ⋅=⋅.2. 如图,在Rt ABC ∆中,90ACB ︒∠=,CD AB ⊥,垂足为点D ,E 、F 分别是AC 、BC 边上的点,且13CE AC =,13BF BC =.(1)求证:AC CDBC BD =; (2)求EDF ∠的度数.3.已知:如图,△ABC 中M 、E 分别是AC 、AB 上的点,ME 、CB 延长线交于一点D ,且ED EM ACBC=。
相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
2、相似三角形的性质(1)对应边的比相等,对应角相等。
(2)相似三角形的周长比等于相似比。
(3)相似三角形的面积比等于相似比的平方。
(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。
二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。
相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。
本文将介绍相似三角形的判定方法以及相似三角形的一些性质。
一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。
当两个三角形的对应角度相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。
2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。
当两个三角形的对应边长成比例时,这两个三角形是相似的。
具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。
当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。
二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。
如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例性质相似三角形的对应边成比例。
如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。
3. 高度与边成比例性质相似三角形的对应边上的高度成比例。
如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。
4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。
如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。
5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。