如何选取动能定理和机械能守恒定律
- 格式:pdf
- 大小:260.96 KB
- 文档页数:2
动能定理与机械能守恒定律动能定理与机械能守恒定律是物理学中两个重要的概念。
它们揭示了能量在物理系统中的转化和守恒,为我们理解和解释运动、力学以及自然界中许多现象提供了基础。
动能定理是描述物体的运动与其动能之间关系的定律。
它表达了物体的动能与物体所受的作用力之间的关系。
根据动能定理,物体的动能等于物体所受的合外力对其所做的功。
换句话说,动能是由于外力对物体做功而产生的。
这个定理可以用公式表示为:动能等于物体的质量乘以其速度的平方的一半。
简而言之,动能定理说明了物体的动能是由于作用力对其做功而产生的。
机械能守恒定律是指在一个封闭的系统中,机械能的总和保持不变。
机械能包括物体的动能和势能。
动能是物体运动时具有的能量,势能是物体由于位置或形状而具有的能量。
根据机械能守恒定律,当一个物体在一个封闭的系统中运动时,它的动能和势能可以相互转化,但总的机械能保持不变。
这个定律可以理解为能量在系统内部的转化与平衡关系。
动能定理和机械能守恒定律之间有着密切的联系。
首先,动能定理可以用来推导和解释机械能守恒定律。
根据动能定理,当一个物体受到外力做功时,物体的动能会增加。
而根据机械能守恒定律,当物体的动能增加时,它的势能会减少,反之亦然。
这表明了动能和势能之间的转化关系,并且保持了机械能的总量不变。
其次,动能定理和机械能守恒定律在解决物理问题中具有重要的应用价值。
通过运用这两个定律,我们可以分析和计算物体在不同情况下的运动和能量转化。
例如,我们可以利用动能定理来计算一个汽车在制动过程中所消耗的能量,或者利用机械能守恒定律来解释一个摆锤在振动过程中动能和势能的变化。
这些应用帮助我们更好地理解物理世界,并且为科学研究和实践提供了指导和依据。
总之,动能定理和机械能守恒定律是物理学中基础而重要的概念。
它们对于理解和解释物体运动和能量转化具有重要意义。
通过学习和应用这些定律,我们可以更好地理解自然界中的各种现象,并且在实际问题的解决中发挥作用。
区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。
(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。
求:小物块与地面之间的动摩擦因数u。
思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。
解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。
动能定理和机械能守恒动能定理和机械能守恒一、引言在物理学中,动能定理和机械能守恒是两个基本的定理。
动能定理描述了一个物体的动能与其所受力的关系,而机械能守恒则说明了一个封闭系统中的机械能总量不变。
这两个定理在解决物体运动问题时具有重要作用。
二、动能定理1. 动能的定义动能是一个物体由于其运动而具有的能量,通常用符号K表示。
对于质量为m、速度为v的物体,其动能可以表示为:K = 1/2mv²其中1/2mv²称为该物体的动量。
2. 动力学方程牛顿第二定律描述了一个物体所受外力与其加速度之间的关系。
根据牛顿第二定律,一个质量为m、受到F力作用的物体将会产生加速度a:F = ma3. 动能定理的表述将牛顿第二定律代入上述动力学方程中,可得:F = ma = m(dv/dt) = mdv/dt = mv(dv/dx)其中dx表示位移。
因此,Fdx = mv(dv/dx)dx = mvdv由于Fdx是物体所受力的功,因此:Fdx = ΔK其中ΔK表示物体动能的变化量。
因此,动能定理可以表述为:物体所受外力所做的功等于其动能的变化量。
三、机械能守恒1. 机械能的定义机械能是一个物体由于其位置和速度而具有的能量,通常用符号E表示。
对于质量为m、高度为h、速度为v的物体,其机械能可以表示为:E = mgh + 1/2mv²其中mgh称为该物体的重力势能,1/2mv²称为该物体的动能。
2. 机械能守恒定律机械能守恒定律指出,在一个封闭系统中,系统中各个部分所具有的机械能总量不变。
也就是说,在一个封闭系统中,重力势能和动能之间可以互相转化,但它们之和始终保持不变。
3. 应用举例以一个自由落体运动为例。
当一个物体从高处自由落下时,重力将会使其获得速度,并且在下落过程中逐渐失去高度。
在这个过程中,重力势能逐渐减少而动能逐渐增加。
当物体到达地面时,其重力势能为零,而动能达到最大值。
根据机械能守恒定律,这个系统中的总机械能始终保持不变。
动能定理,机械能守恒定律,能量守恒定律,动量定理,动量守恒定理的内容,表达式,适用条件。
动能定理指的是物体受到力的加速,物体的动能就会增加,其表达
式为:
µv2 =W,其中µ为物体的质量,v为物体的速度,W为物体受力的势能。
只要施加力,物体的动能就会改变,当物体处于静止状态时,动
能为零。
机械能守恒定律认为物体的机械能是不变的,总的机械能等于其动能
与势能的总和,表达式为:K0+U0=K+U,其中K0是物体的初始动能,U0为物体初始势能,K是物体的最终动能,U为物体的最终势能,表
示物体的动能和势能之和均不变、守恒。
能量守恒定律认为,物质运动时,能量不会被创建或消失,也就是说
能量是守恒的,它们只能以同样的形式互相转变,表达式为:Ε=Ε0,
其中Ε表示物体最终的能量,Ε0代表物体的初始能量,Ε等于Ε0,表
示能量守恒。
动量定理指的是物体受到力时,其动量就会改变,表达式为:p = mv,其中p为物体的冲量,m为物体的质量,v是物体的速度,物体的冲量
与其质量和速度成正比。
动量守恒定律认为物体的总冲量是守恒的,不会改变,表达式为:
∆p=0,虽然物体加力后,它的总冲量会改变,但是这个变化是可以由
其他物体抵消的,总的冲量是守恒的。
所有这些定律和定理都适用于物体受到力而加速或减速运动时,其运动规律是相同的,即动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定理的适用。
只要物体的势能发生变化,就可以使用这些定律和定理来描述物体的运动特性。
动能定理和机械能守恒在物理学中,动能定理和机械能守恒是两个重要的概念。
它们都与物体的运动和能量有关,但又从不同角度进行了阐述,下面我们将一一介绍。
动能定理动能定理是指物体的动能与其所受的外力之间的关系。
根据动能定理,一个物体的动能等于它所受的外力对其所做的功。
简单来说,动能定理可以用以下公式表示:物体的动能 = 外力对物体所做的功动能定理说明了一个基本原理:物体的运动能量与其所受的外力有关。
当一个物体受到外力时,它的动能会发生变化。
如果外力对物体做功,则物体的动能将增加。
如果外力的方向与物体的速度方向相反,则物体的动能将减少。
机械能守恒机械能守恒是指一个系统内的机械能总量是不变的。
在一个封闭系统内,机械能一般包括物体的动能和势能。
机械能守恒定律可以用以下公式表示:系统中的机械能总量 = 动能 + 势能机械能守恒定律的基本原理是:在不考虑摩擦和其他非弹性因素的情况下,封闭系统中的机械能总量不变。
这意味着,如果一个物体的动能增加了,它的势能将减少,反之亦然。
动能定理和机械能守恒之间的关系动能定理和机械能守恒是两个相互关联的概念。
它们都涉及到物体的运动和能量变化,但又从不同的角度进行了阐述。
动能定理强调了外力对物体动能的影响,而机械能守恒则强调了封闭系统内机械能总量的不变性。
在应用这两个概念时,我们需要注意它们的适用范围。
动能定理适用于单个物体或一个部分系统,而机械能守恒则适用于封闭系统。
此外,机械能守恒只适用于不考虑摩擦和非弹性因素的情况下。
动能定理和机械能守恒是物理学中两个基本的概念。
它们分别从不同角度阐述了物体的运动和能量变化规律,并在物理学的各个领域中有着广泛的应用。
我们需要在实际问题中灵活运用它们,以解决各种与物体运动和能量变化相关的问题。
动能定理、机械能守恒、动量守恒综合应用一、动能定理:合力对物体所做的功等于物体动能的变化 2022121mv mv W -=合注:W 合为合力做功,一般有两种求法:①是物体所有力做功的代数和W 总 = W 1+W 2+…+W n ; ②是先求合力然后用功的定义式:θLCOS F W 合=二、机械能守恒定律:1、两种表述方法:①在只有重力和弹力(弹簧)做功的情况下,物体的动能和势能发生相互转化,但机械能总量保持不变。
222121v m h mg mv mgh '+'=+ 即 k p k p E E E E '+'=+②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
减增E E ∆=∆2、解题步骤:①明确研究对象和它的运动过程。
②分析研究对象的受力情况,判断机械能是否守恒。
③确定对象运动的起始和终了状态,选定零势能参考平面,确定物体在始、末两状态的机械能 ④选定一种表达式,统一单位,列式求解三、动量守恒定律1、定律内容及公式:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
22112211v m v m v m v m '+'=+ 即:p 1+p 2=p 1/+p 2/ 或:Δp 1= -Δp 2 2、动量守恒定律成立的条件①系统不受外力或者所受外力之和为零;②系统受外力,但外力远小于内力,可以忽略不计;③系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
④全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
训练1如图所示,AB 为1/4圆弧轨道,半径为R=0.8m ,BC 是水平轨道,长S=3m ,BC 处的摩擦系数为μ=1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
训练2抛出的手雷在最高点时水平速度为10m/s ,这时突然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。
动能定理与机械能守恒定律实验验证动能定理与机械能守恒定律是物理学中重要的基本定律之一。
通过实验的手段验证这两个定律的正确性,不仅可以加深对物理学理论的理解,更可以培养学生的实验操作和数据处理能力。
一、实验目的本实验的目的是验证动能定理以及机械能守恒定律,并通过实验数据的处理来进一步探索这两个定律的应用和局限性。
二、实验器材实验器材主要包括:一个光滑的水平桌面、一个小球、一个起始线、一根细线、一个电子计时器、一个直尺。
三、实验步骤1. 在桌面上设置起始线,将小球放在起始线上。
2. 用细线将小球绑在电子计时器上方的支架上,小球的下垂高度为h。
3. 释放小球,观察小球的运动情况,并记录小球通过起始线和结束线所用的时间t。
4. 重复上述实验步骤三次,分别取不同的h值。
四、实验数据处理通过实验得到的数据可以得出小球通过起始线和结束线所用时间t 与小球下垂高度h之间的关系。
根据动能定理和机械能守恒定律,可以得出以下公式:1. 动能定理:mgh = (1/2)mV²其中,m为小球质量,g为重力加速度,h为小球的下垂高度,V为小球通过起始线和结束线的速度。
2. 机械能守恒定律:mgh = (1/2)mV² + EL其中,EL为小球在通过起始线和结束线的过程中的机械能损失,包括摩擦损失、空气阻力损失等。
通过实验数据的处理,我们可以利用上述两个公式来验证动能定理以及机械能守恒定律的正确性。
首先,通过对比实验数据与理论计算值的差异,可以判断实验结果的准确性。
其次,通过分析实验数据中机械能损失的大小,可以对实际应用中的机械系统进行优化设计,以减少能量的损失和浪费。
五、实验结果分析通过实验数据的处理,我们可以得出小球的速度V与下垂高度h之间的关系。
根据实验结果,我们可以发现:1. 实验结果与理论计算值相符合,验证了动能定理和机械能守恒定律的正确性。
2. 实验数据中机械能损失的大小与实验条件有关,包括桌面的光滑程度、空气的阻力等因素。
动能定理与机械能守恒定律动能定理和机械能守恒定律是物理学中重要的两个定律,它们在描述物体运动和能量转化过程中扮演着重要的角色。
本文将简要介绍这两个定律并探讨它们的应用。
一、动能定理动能定理是描述物体运动中能量变化的定律。
它表明了物体动能的变化与物体所受的外力做功之间的关系。
动能定理的数学表达式为:动能变化 = 外力做功其中,动能变化表示物体动能的变化量,外力做功表示作用在物体上的外力所做的功。
动能定理可以理解为能量守恒定律在动力学中的具体应用。
动能定理的一个重要应用是用于分析物体的加速度和位移之间的关系。
根据动能定理,当一个物体以恒定的力加速时,其动能将增加。
根据牛顿第二定律,力等于物体质量乘以加速度,从而可以推导出物体的位移与加速度之间的关系。
二、机械能守恒定律机械能守恒定律是描述闭合系统中机械能守恒的定律。
在没有摩擦和空气阻力的情况下,系统的机械能保持不变。
机械能守恒定律可以分为两个部分:动能守恒和势能守恒。
动能守恒表明在系统中,物体的动能转化为其他形式的能量时,总的动能保持不变。
例如,当一个物体从高处自由下落时,其动能将逐渐转化为重力势能。
根据动能守恒定律,物体在下落的过程中其动能减小而势能增加。
势能守恒表明在系统中,势能能够转化为其他形式的能量时,总的势能保持不变。
例如,弹簧振子在振动过程中,弹性势能和动能不断转化,但总的机械能保持不变。
机械能守恒定律的应用广泛。
例如,在自行车骑行过程中,动能和势能不断转化,但总的机械能保持不变。
这一定律在机械工程和能量转化领域中有着广泛的应用。
结论动能定理和机械能守恒定律是物理学中重要的两个定律。
动能定理描述了物体动能变化与作用力做功之间的关系,而机械能守恒定律描述了闭合系统中机械能守恒的规律。
这两个定律在物体运动和能量转化的研究中起着关键的作用。
通过研究和应用动能定理和机械能守恒定律,我们可以更好地理解物体的运动和能量转化过程。
这些定律不仅在理论研究中有重要意义,也在工程和实际应用中有广泛的应用价值。