高中物理电磁学综合复习题目
- 格式:doc
- 大小:240.00 KB
- 文档页数:16
(每日一练)通用版高中物理电磁学静电场经典大题例题单选题1、带负电的粒子在某电场中仅受电场力作用,能分别完成以下两种运动:①在电场线上运动,②在等势面上做匀速圆周运动。
该电场可能由A.一个带正电的点电荷形成B.一个带负电的点电荷形成C.两个分立的带等量负电的点电荷形成D.一带负电的点电荷与带正电的无限大平板形成答案:A解析:AB.负电荷在电场线上运动,说明电场线是直线;负电荷在等势面上做匀速圆周运动,说明等势线是圆形曲线,能满足以上两种情况的场源电荷可以是一个带正电的点电荷,不可能是带负电的点电荷,所以A正确、B错误;C.两个分立的带等量正电的点电荷可以满足以上条件,而两个分立的带等量负电的点电荷不能使负电荷完成题中运动,所以C错误;D.题中情况的等势线不能使负电荷做匀速圆周运动,D错误。
故选A。
2、两个质量相同的小球用不可伸长的细线连结,置于场强为E的匀强电场中,小球1和2均带正电,电量分别为和(>).将细线拉直并使之与电场方向平行,如图所示.若将两小球同时从静止状态释放,则释放后细线中的张力T为(不计重力及两小球间的库仑力)A.T=(-)EB.T=(-)EC.T=(+)ED.T=(+)E答案:A解析:,对将两个小球看做一个整体,整体在水平方向上只受到向右的电场力,故根据牛顿第二定律可得a=E(q1+q2)2m小球2分析,受到向右的电场力,绳子的拉力,由于q1>q2,球1受到向右的电场力大于球2向右的电场力,(q1−q2)E,故A正确;所以绳子的拉力向右,根据牛顿第二定律有T+Eq2=ma,联立解得T=12小提示:解决本题关键在于把牛顿第二定律和电场力知识结合起来,在研究对象上能学会整体法和隔离法的应用,分析整体的受力时采用整体法可以不必分析整体内部的力,分析单个物体的受力时就要用隔离法.采用隔离法可以较简单的分析问题3、如图所示,实线表示某电场的电场线(方向未标出),虚线是一带负电的粒子只在电场力作用下的运动轨迹,粒子在M点和N点时加速度大小分别为a M、a N,速度大小分别为v M、v N,下列判断正确的是()A.a M<a N,v M<v N B.a M<a N,v M>v NC.a M>a N,v M<v N D.a M>a N,v M>v N答案:B解析:N点的电场线比M点的密,故N点的场强大于M点的场强,粒子在N点的加速度大于在M点的加速度,即a M<a N做曲线运动的粒子受到的合外力指向曲线的凹侧,粒子受到的电场力指向曲线的右下方,因为粒子带负电,场强方向沿左上方,粒子由M到N,电场力做负功,所以v M>v N故B正确;ACD错误。
电磁学考试题库及答案高中电磁学是物理学中的一个重要分支,它研究的是电荷、电场、电流、磁场以及它们之间的相互作用。
以下是一份高中电磁学考试题库及答案,供同学们学习和练习。
一、选择题1. 电荷间的相互作用遵循以下哪条定律?A. 牛顿第一定律B. 牛顿第二定律C. 库仑定律D. 欧姆定律答案:C2. 以下哪个单位是用来测量电流的?A. 伏特(V)B. 安培(A)C. 欧姆(Ω)D. 法拉(F)答案:B3. 一个电路中,电阻为10Ω,通过它的电流为0.5A,根据欧姆定律,该电路两端的电压是多少伏特?A. 2VB. 5VC. 10VD. 20V答案:B4. 电磁波的传播速度在真空中是多少?A. 299,792,458 m/sB. 300,000 km/sC. 3×10^8 m/sD. 3×10^11 m/s答案:C5. 法拉第电磁感应定律表明什么?A. 电流的产生与磁场的变化有关B. 电流的产生与电场的变化有关C. 磁场的产生与电流的变化有关D. 电场的产生与磁场的变化有关答案:A二、填空题6. 电场强度的定义式是 \( E = \frac{F}{q} \),其中 \( E \) 表示电场强度,\( F \) 表示电荷所受的电场力,\( q \) 表示电荷量。
答案:电场强度7. 电流的国际单位是安培,用符号 \( A \) 表示。
答案:安培8. 一个闭合电路的总电阻为 \( R \),电源的电动势为 \( E \),电路中的电流 \( I \) 可以通过欧姆定律计算,即 \( I = \frac{E}{R} \)。
答案:欧姆定律9. 电磁波的三个主要特性包括:波长、频率和速度。
答案:波长、频率10. 法拉第电磁感应定律表明,当磁场变化时,会在导体中产生感应电动势。
答案:感应电动势三、简答题11. 简述电磁波的产生原理。
答案:电磁波是由变化的电场和磁场相互作用产生的,它们以波的形式向外传播,不需要介质,可以在真空中传播。
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
2020年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.电磁感应-2020高考真题一.选择题1.(2020高考全国理综I)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。
ab、dc足够长,整个金属框电阻可忽略。
一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。
经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【参考答案】BC【命题意图】本题考查法拉第电磁感应定律、闭合电路欧姆定律、安培力及其相关知识点,考查的核心素养是运动和力的物理观念、科学思维。
【解题思路】用水平恒力F向右拉动金属框,bc边切割磁感线产生感应电动势,回路中有感应电流i,bc 边受到水平向左的安培力作用,设金属框的质量为M,加速度为a1,由牛顿第二定律,F-BiL=Ma1;导体棒MN受到向右的安培力向右加速运动,设导体棒的质量为m,加速度为a2,由牛顿第二定律,BiL=ma2,二者运动的速度图像如图所示。
设金属框bc边的速度为v时,导体棒的速度为v’,则回路中产生的感应电动势为E=BL(v-v’),由闭合电路欧姆定律I=E/R=()'BL v vR-,F安=BIL可得金属框ab边所受的安培力和导体棒MN所受的安培力都是F安=B 2L 2(v-v’)/R ,即金属框所受的安培力随着速度的增大而增大。
对金属框,由牛顿运动定律,F - F 安=Ma 1,对导体棒MN ,由牛顿运动定律, F 安=ma 2,二者加速度之差△a= a 1- a 2=(F - F 安)/M- F 安/m=F/M- F安(1/M+1/m ),随着所受安培力的增大,二者加速度之差△a 减小,当△a 减小到零时,即F/M=()22'B L v v R-(1/M+1/m ),所以金属框和导体棒的速度之差△v=(v-v’)=()22FRmB L m M +保持不变。
(每日一练)人教版高中物理电磁学静电场知识总结例题单选题1、如图,在(a,0)位置放置电荷量为q的正点电荷,在(0,a)位置放置电荷量为q的负点电荷,在距P(a,a)为√2a的某点处放置正点电荷Q,使得P点的电场强度为零。
则Q的位置及电荷量分别为()A.(0,2a),√2q B.(0,2a),2√2qC.(2a,0),√2q D.(2a,0),2√2q答案:B解析:根据点电荷场强公式E=k Q r2两点量异种点电荷在P点的场强大小为E0=kqa2,方向如图所示两点量异种点电荷在P点的合场强为E1=√2E0=√2kqa2,方向与+q点电荷与-q点电荷的连线平行如图所示Q点电荷在p点的场强大小为E2=k Q(√2a)2=kQ2a2三点电荷的合场强为0,则E2方向如图所示,大小有E1=E2解得Q=2√2q由几何关系可知Q的坐标为(0,2a)故选B。
2、如图所示,在水平向右的匀强电场中,质量为m的带电小球,以初速度υ从M点竖直向上运动,通过N点时,速度大小为2υ,方向与电场方向相反,则小球从M运动到N的过程()A.动能增加12mυ2B.机械能增加2mυ2C.重力势能增加32mυ2D.电势能增加2mυ2解析:由动能的表达式E k =12mv 2可知带电小球在M 点的动能为E kM =12mv 2,在N 点的动能为E kN =12m (2v )=2mv 2,所以动能的增量为ΔE k =32mv 2,故A 错误;带电小球在电场中做类平抛运动,竖直方向受重力做匀减速运动,水平方向受电场力做匀加速运动,由运动学公式有v y =v =gt,v x =2v =at =qE mt ,可得qE =2mg ,竖直方向的位移ℎ=v2t ,水平方向的位移x =2v 2t =vt ,因此有x =2ℎ,对小球写动能定理有qEx −mgℎ=△E k =32mv 2,联立上式可解得qEx =2mv 2,mgℎ=12mv 2,因此电场力做正功,机械能增加,故机械能增加2mv 2,电势能减少2mv 2,故B 正确D 错误,重力做负功重力势能增加量为12mv 2,故C 错误.3、静电场中,带电粒子在电场力作用下从电势为φa 的a 点运动至电势为φb 的b 点.若带电粒子在a 、b 两点的速率分别为va 、vb ,不计重力,则带电粒子的比荷q /m ,为( )A .v a 2−v b 2φb−φaB .v b 2−v a 2φb−φaC .v a 2−v b 22(φb−φa)D .v b2−v a 22(φb−φa)答案:C 解析:带电粒子在a 、b 两点的速率分别为v a 、v b ,带电粒子在a 、b 两点动能的变化ΔE k =12mv b 2−12mv a 2带电粒子在电场力作用下从电势为φa 的a 点运动至电势为φb 的b 点,电势能的变化为ΔE P =qφb −qφa根据能量守恒得ΔE K =−ΔE P解得q m =v a 2−v b 22(φb −φa )4、如图所示,边长为a的等边ΔABC的A、B、C三点处各放置一个点电荷,三个点电荷所带电荷量数值均为Q,其中A、B处为正电荷,C处为负电荷;边长为a的等边ΔEFG的E、F、G三点处均有一垂直纸面的电流大小为I的导线,其中E、F处电流垂直纸面向内,G处电流垂直纸面向外,O,H是三角形的中心,D为AB中点,若两三角形均竖直放置,且AB、EF相互平行,下列说法正确的是()A.O点处的电势高于D点处的电势B.带负电的试探电荷沿直线从D点运动到O点的过程中电势能减小C.A点电荷所受电场力方向与E点处通电直导线所受安培力方向相同D.正电荷在O点处所受电场力方向与电流方向垂直纸面向外的通电导线在H点处所受安培力方向相同答案:D解析:A.结合三个点电荷分布可知,CD的电场线方向由D指向C,顺着电场线的方向电势逐渐降低,即O点处的电势低于D点处的电势,故A错误;B.带负电的试探电荷沿直线从D点运动到O点的过程中,电势降低,故负电荷的电势能增大,故B错误;C.在电场中,根据同种电荷排斥,异种电荷相吸引,分别作出B、C对A的作用力,再根据平行四边定则进行合成,得A点电荷所受电场力F A,其方向如左图所示;在磁场中,根据同向电流相吸引,反向电流相排斥,分别作出F、G对E的作用力,再根据平行四边定则进行合成,得E点处通电直导线所受安培力F E,其方向如右由图可知,A点电荷所受电场力方向与E点处通电直导线所受安培力方向不相同,故C错误;D.在电场中,作出A、B、C三个点电荷在O点产生的电场强度方向,因正电荷A、B两点电荷产生的电场强度大小相等,与DC线的夹角相等,根据平行四边形定则可知,A、B的合电场强度方向由O指向C,而负电荷C 在O点产生的电场强度方向,也是由O指向C,如左图所示,故三个点电荷在O点产生的电场强度方向最终也是由O指向C,所以将正电荷放在O点,其所受的电场力方向由O指向C;在磁场中,分别作出E、F、G三根通电导线在H点产生的磁感应强度方向,因E、F的电流大小相等,方向相同,且都向里,则两根通电导线在H 点产生的磁感应强度大小相等,方向如右图所示根据平行四边形定则,可知E、F两根通电导线的合磁感应强度方向沿水平向右,而G通的电流方向是垂直纸面向外,故在H点产生的磁感应强度方向是水平向右,故三根通电导线的最终合磁感应强度方向水平向右,所以根据左手定则可知,在H点放一根电流方向垂直纸面向外的通电导线,所受的安培力方向由H指向G,即正电荷在O 点处所受电场力方向与电流方向垂直纸面向外的通电导线在H 点处所受安培力方向相同,故D 正确。
高考物理电磁学知识点之传感器技巧及练习题附解析(2)一、选择题R为光敏电阻(光照强度增加时,其阻值减1.如图所示,电源的电动势为E,内阻为r,G小).现增加光照强度,则下列判断正确的是()A.B灯变暗,A灯变亮B.0R两端的电压变大C.B灯变亮,A灯变暗D.电源的总功率变小2.下列说法中正确的是( )A.电饭锅中的敏感元件是光敏电阻B.测温仪中的测温元件可以是热敏电阻C.机械式鼠标中的传感器接收到连续的红外线,输出不连续的电脉冲D.火灾报警器中的光传感器在没有烟雾时呈现低电阻状态,有烟雾时呈现高电阻状态3.自动门、生命探测器、家电遥控系统、防盗防火报警器都使用了( )A.温度传感器 B.生物传感器 C.红外线传感器 D.压力传感器4.某同学设计的散热排风控制电路如图所示,M为排风扇,R0是半导体热敏电阻,其阻值随温度升高而减小,R是可变电阻.下列说法中正确的是A.环境温度升高时,A点电势升高B.可变电阻R阻值调大时,A点电势降低C.可变电阻R阻值调大时,排风扇开始工作的临界温度升高D.若用金属热电阻代替半导体热敏电阻,电路仍能正常工作5.电熨斗在达到设定的温度后就不再升温,当温度降低时又会继续加热,使温度总与设定的相差不多。
在熨烫不同的织物时,设定的温度可以不同。
进行这样的控制,靠的是A.力传感器 B.光传感器 C.位移传感器 D.温度传感器6.如图所示为一种常见的身高体重测量仪,测量仪顶部向下发射超声波,超声波经反射后返回,被测量仪接收,测量仪可记录发射和接收的时间间隔.测量仪底部有一压力传感(k为比例系数).某同学器,其输出电压作用在它上的压力F成正比,表达式为U kF已知了自己的身高h、质量m和重力加速度g,他想利用该装置测量超声波速度v和比例系数k ,他多次研究发现,当他站上测重台时测量仪记录的时间间隔比他没站上时减少了t ∆;当他没站上测重台时,测量仪已有输出电压为0U (0U ≠0),当他站上测重台时测量仪输出电压为U ,那么超声波v 与比例系数k 为A .02U U h v k t mg -==∆, B .022U U h v k t mg -==∆, C .02U U h v k t mg -==∆, D .()022U U h v k t mg-==∆, 7.压敏电阻能够把压力这个力学量转换为电阻这个电学量,压敏电阻的阻值随所受压力的增大而减小,在升降机中将重物放在压敏电阻上,压敏电阻接在如图甲所示的电路中,R 为定值电阻,电流表示数随时间变化如图乙所示,某同学根据电流表的示数变化情况推断升降机的运动状态,下列说法中正确的是( )A .0~1t 时间内,升降机可能匀速运动B .0~1t 时间内,升降机一定匀速上升C .1t ~2t 时间内,升降机可能匀速上升D .1t ~2t 时间内,升降机一定匀加速上升8.诺贝尔物理学奖授予了法国科学家阿尔贝•费尔和德国科学家彼得•格林贝格尔,以表彰他们发现“巨磁电阻(GMR )效应”.基于巨磁电阻效应开发的用于读取硬盘数据的磁电技术,被认为是纳米技术的第一次真正应用.下图是研究巨磁电阻特性的原理示意图,实验发现,当闭合S 1、S 2后使滑动变阻器的滑片P 向左滑动的过程中,指示灯明显变亮,下列说法中正确的是( )A.滑片P向左滑动的过程中,电磁铁的磁性减弱B.巨磁电阻的阻值随磁场的增强而明显增大C.巨磁电阻的阻值随磁场的增强而明显减小D.巨磁电阻不可用来制作磁电传感器9.酒精测试仪(主要部件是二氧化锡半导体型酒精气体传感器)用于测试机动车驾驶人员是否酒驾.酒精气体传感器的电阻与酒精气体的浓度成反比,那么电压表的示数U与酒精气体浓度C之间的对应关系正确的是()A.U越大,表示C越小,C与U成反比B.U越大,表示C越大,C与U成正比C.U越大,表示C越小,但是C与U不成反比D.U越大,表示C越大,但是C与U不成正比10.氧化锡传感器主要用于汽车尾气中一氧化碳浓度的检测。
第一部分:选择题(共60分)1.长直导线通电,其产生的磁场线是:A.与导线平面垂直的小圆圈B.与导线平面平行的半圆C.与导线平面垂直的直线D.与导线平面平行的直线2.在匀强磁场中,一电子垂直于磁场方向运动,如果其速度增大,则此时电子所受的磁力:A.增大B.减小C.不变D.无法判断3.载流直导线的磁感应强度的大小取决于下列哪项?A.导线的长度B.导线的宽度C.导线的电流方向D.导线的材料4.一质点在均匀磁场中作圆周运动,若磁场强度增加,则此时质点的运动半径会:A.增大B.减小C.不变D.无法判断5.两根平行直导线之间的力是由:A.电荷之间的相互作用力B.磁感线之间的相互作用力C.电荷和磁感线之间的相互作用力D.无法判断6.质量为m的带电粒子在匀强磁场中的圆周运动半径为R,速度为v,所受的磁场力为F,则F与v之间的关系为:A.F∝vB.F∝v²C.F∝1/vD.F∝1/v²7.两根电流方向相同的导线之间的相互作用力的方向是:A.按导线之间的直线方向B.按两导线平面的向内方向C.按两导线平面的向外方向D.沿行线的圆周方向8.载流直导线产生的磁场是由电流:A.垂直于导线方向的圆圈状磁感线组成B.平行于导线方向的磁感线组成C.垂直于导线方向的直线状磁感线组成D.平行于导线方向的直线状磁感线组成9.一条载流直导线上的电流强度增加,此时导线附近的磁感应强度:A.增大B.减小C.不变D.无法判断10.质量为m的带电粒子在匀强磁场中的圆周运动半径为R,速率为v,则v与R之间的关系为:A.v∝RB.v∝R²C.v∝1/RD.v∝1/R²第二部分:填空题(共40分)1.载流直导线的磁感应强度与导线长度和电流强度的关系为___________________。
2.在匀强磁场中,电子受到的磁力方向与速度和磁场方向之间的夹角为___________________。
3.一根电流为I的导线的磁感应强度与导线与观察点间的距离r的平方之和的关系为___________________。
电磁学部分一、选择题:在下列每小题给出的四个答案中,至少有一个答案是正确的.把正确答案全选出来.1.20世纪50年代,科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场.连续的磁暴作用可维持地磁场.则外地核中的电流方向为(地磁场N 极与S 极在地球表面的连线称为磁子午线)( )A .垂直磁子午线由西向东B .垂直磁子午线由东向西C .沿磁子午线由南向北D .沿磁子午线由北向南答案:B2.如图所示的四个实验现象中,不能表明电流能产生磁场的是( )A .图甲中,导线通电后磁针发生偏转B .图乙中,通电导线在磁场中受到力的作用C .图丙中,当电流方向相同时,导经相互靠近D .图丁中,当电流方向相反时,导线相互远离答案:B3.两个完全相同的金属小球A 、B ,球A 所带电荷量为+4Q ,球B 不带电.现将球B 与球A 接触后,移到与球A 相距为d 处(d 远远大于小球半径).已知静电力常量为k ,则此时两球A 、B 之间相互作用的库仑力大小是( )A .222d kQB .d kQ 22C .224d kQ D .d kQ 24. 答案:C4.如图所示,一个不带电的导体球A 放在带负电的可以看做是点电荷的导体B 附近,达到静电平衡后,则有( )A .导体球A 左端的电势高于右端的电势B .导体球A 左端的电势等于右端的电势C .当导体球A 接地后,导体B 的电势将降低D .当导体球A 接地后,导体B 的电势将升高答案:BD5.一负电荷从电场中A 点由静止释放,只受电场力作用,沿电场线运动到B 点,它运动的v -t 图象如图甲所示,则两点A 、B 所在区域的电场线分布情况可能是图乙中的 ( )答案:C6.如图所示,圆O 在匀强电场中,场强方向与圆O 所在平面平行,带正电的微粒以相同的初动能沿着各个方向从A 点进入圆形区域中,只在电场力作用下运动,从圆周上不同点离开圆形区域,其中从C 点离开圆形区域的带电微粒的动能最大,图中O 是圆心,AB 是圆的直径,AC 是与AB 成α角的弦,则匀强电场的方向为( )A.沿AB 方向B.沿AC 方向C.沿BC 方向D.沿OC 方向答案:D7.图中虚线是用实验方法描绘出的某一静电场中的一簇等势线,若不计重力的带电粒子从a 点射入电场后恰能沿图中的实线运动,b 点是其运动轨迹上的另一点,则下述判断正确的是( )A .b 点的电势一定高于a 点B .b 点的场强一定大于a 点C .带电粒子一定带正电D .带电粒子在b 点的速率一定小于在a 点的速率答案:D8.如图(a )所示,AB 是某电场中的一条电场线.若有一电子以某一初速度并且仅在电场力的作用下,沿AB 由点A 运动到点B ,其速度图象如图(b)所示.下列关于A 、B 两点的电势ϕ和电场强度E 大小的判断正确的是( )A.B A E E >B.B A E E <C.B A ϕϕ>D. B A ϕϕ<答案:AC9.如图所示,平行直线A A '、B B '、C C '、D D '、E E ',分别表示电势为-4 V 、-2 V 、0、2 V 、4 V 的等势线,若AB=BC=CD= DE= 2 cm ,且与直线MN 成300角,则( )A .该电场是匀强电场,场强方向垂直于A A ',且左斜下B .该电场是匀强电场,场强大小E=2 V/mC .该电场是匀强电场,距C 点距离为2 cm 的所有点中,最高电势为4V ,最低电势为-4VD .该电场可能不是匀强电场,E=U/d 不适用答案:C10.如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球以初速度v0从斜面底端A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则()A.A、B两点间的电压一定等于mgL sinθ/qB.小球在B点的电势能一定大于在A点的电势能C.若电场是匀强电场,则该电场的电场强度的最大值一定为mg/ qD.若该电场是斜面中点正上方某点的点电荷Q产生的,则Q一定是正电荷答案:A11.如图所示,三根通电长直导线P、Q、R互相平行且通过正三角形的三个顶点,三条导线中通入的电流大小相等,方向垂直纸面向里;通过直导线产生磁场的磁感应强度B=kI/r,I为通电导线的电流大小,r为距通电导线的垂直距离,k为常量;则通电导线R受到的磁场力的方向是()A.垂直R,指向y轴负方向B.垂直R,指向y轴正方向C.垂直R,指向x轴正方向D.垂直R,指向x轴负方向答案:A12.如图所示,a、b是两个带有同种电荷的小球,用绝缘细线悬挂于同一点,两球静止时,它们距水平地面的高度相等,绳与竖直方向的夹角分别为α、β。
高中物理典型例题集锦(电磁学部分)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
若保持两板间的电压不变,则:A.若把A板向上平移一小段距离,质点自P点下落仍能返回。
B.若把B板向下平移一小段距离,质点自P点下落仍能返回。
C.若把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
图22-1D.若把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中若断开开关S后,再移动金属板,则问题又如何?(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为 T(与电压变化周期相同),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的范围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
24.如图所示,在第一、四象限内有磁感应强度为B,方向垂直于坐标平面向里的匀强磁场;在第二、三象限内有水平向右的匀强电场。
A为固定在x轴上的一个放射源,内有放射性元素。
放射源沿x轴正方向释放出的一个α粒子,恰好能打在y轴上的N点处。
测得A、N到原点O的距离分别是l和2l,α粒子的质量为m,电荷量为q。
不考虑α粒子的重力和射线粒子之间的相互作用。
求:⑴该α粒子在匀强磁场中做圆周运动的轨道半径r;⑵该α粒子从放射源中射出时的动能E k;⑶已知该α粒子从N点穿出磁场后恰好能垂直于x轴打在x轴上,求匀强电场的场强大小E。
x23.在坐标系xOy 平面的第一象限内,有一个匀强磁场,磁感应强度大小恒为B 0,方向垂直于xOy 平面,且随时间作周期性变化,如同所示,规定垂直xOy 平面向里的磁场方向为正。
一个质量为m ,电荷量为q 的正粒子,在0 t 时刻从坐标原点以初速度0v 沿x 轴正方向射入,不计重力的影响,经过一个磁场变化周期T (未确定)的时间,粒子到达第一象限内的某点P ,日速度方向仍与x 轴正方向平行同向。
则(1)粒子进人磁场后做圆周运动的半径是多大?(2)若O 、P 连线与x 轴之间的夹角为45°,则磁场变化的周期T 为多大?(3)若粒子运动轨迹恰好与y 轴相切,试求P 点的坐标。
12.如图所示,用绝缘管制成的圆形轨道竖直放置,圆心与坐标原点重合,在1、2象限有+,质量垂直于纸面向外的匀强磁场,在第4象限有竖直向下的匀强电场,一个带电量为q+,质量也是m的小球A从图中位为m的小球C放在管中的最低点,另一个带电量也是q置由静止释放开始运动。
球A在最底点处与C相碰并粘在一起向上滑,刚好能通过最高点。
不计一切摩擦,电量保持不变,轨道半径为R,R远大于轨道的内径,小球直径略小于管道内径,小球可看成质点。
求(1)在最低点碰后的共同速度;(2)电场强度E:(3)若小球第二次到最高点时,刚好对轨道无压力,求磁感应强度B。
25.(18分)真空中有一半径为R的圆形匀强区域,圆心为O,磁场的方向垂直纸面向里,磁感应强度为B,在距圆心R2处有一屏MN,MN垂直于纸面放置,AO为平行于纸面的半径,其沿长线与屏交于C(如图所示),一个带负电的粒子以初速度v沿AC的方向进入该圆形磁场区域,最后打在屏上的D点,D、C相距,不计粒子的重力.(1)求粒子在磁场中运动的轨道半径r和粒子的比荷;(2)若该粒子仍以初速度v从A点进入圆形磁场区域,但方向与AC成600向右上方,粒子最后打在屏上的E点,求粒子从A到E所经历的时间.18.(17分)真空中有一半径为r的圆柱形匀强磁场区域,磁场方向垂直于纸面向里,Ox为过边界上O点的切线,如图所示.从O点在纸面内向各个方向发射速率均为V0的电子,设电子间相互作用忽略,且电子在磁场中的偏转半径也为r.已知电子的电荷量为e,质量为m.(1)速度方向分别与Ox方向夹角成60°和90°的电子,在磁场中的运动时间分别为多少?(2)所有从磁场边界射出的电子,速度方向有何特征?(3)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为V0的电子.请设计一种匀强磁场分布,使得由M点发出的所有电子都能够会聚到N点.17.(16分)如图甲所示,MN为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔OO′正对,在两板间有垂直于纸面方向的磁场。
磁感应强度随时间的变化如图乙所示.有一群正离子在t=0时垂直于M板从小孔O射入磁场,已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为了T0.不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:(1)磁感应强度B0的大小;(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.18.(18分)如图所示,在xOy坐标平面的第一象限内有沿-y方向的匀强电场,在第四象限内有垂直于平面向外的匀强磁场.现有一质量为m,带电荷量为+q的粒子(重力不计)以初速度V0沿-x方向从坐标为(3l,l)的P点开始运动,接着进入磁场后由坐标原点O射出,射出时速度方向与y轴方向夹角为45°.求:(1)粒子从O点射出时的速度v和电场强度E;(2)粒子从P点运动到O点过程所用的时间.17.(15分)如图所示,MN为一竖直放置足够大的荧光屏,距荧光屏左边l的空间存在着一宽度也为l、方向垂直纸面向里的匀强磁场.O′为荧光屏Array上的一点,OO′与荧光屏垂直,一质量为m、电荷量为q的带正电的粒子(重力不计)以初速度V0从O点沿OO′方向射入磁场区域.粒子离开磁场后打到荧光屏上时,速度方向与竖直方向成30°角.(1)求匀强磁场磁感应强度的大小和粒子打到荧光屏上时偏离O′点的距离;(2)若开始时在磁场区域再加上与磁场方向相反的匀强电场(图中未画出),场强大小为正,则该粒子打到荧光屏上时的动能为多少?14.(22分)如图(甲)所示,两平行金属板的板长不超过0.2m ,板间的电压u 随时间t 变化的u —t 图线如图(乙)所示,在金属板右侧有一左边界为MN 、右边无界的匀强磁场,磁感应强度B=0.01T ,方向垂直纸面向里.现有带正电的粒子连续不断地以速度v 0=105 m /s ,沿两板间的中线OO ′平行金属板射入电场中,磁场边界MN 与中线OO ′垂直.已知带电粒子的比荷mq =108C /kg ,粒子的重力和粒子间相互作用力均可以忽略不计.(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的.试说明这种处理能够成立的理由.(2)设t=0.1s 时刻射入电场的带电粒子恰能从平行金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小。
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d ,试判断:d 的大小是否随时间而变化?若不变,证明你的结论;若变,求出d 的变化范围.17.(15分)如右图所示,竖直平行直线为匀强电场的电场线,电场方向未知,A、B是电场中的两点,AB两点的连线长为l且与电场线所夹的锐角为θ.一个质量为m,电荷量为-q的带电粒子以初速度v0。
从A点垂直进入电场,该带电粒子恰好能经过B点.不考虑带电粒子的重力大小.(1)根据你学过的物理学规律和题中所给的信息,对反映电场本身性质的物理量(例如电场方向),你能作出哪些定性判断或求得哪些定量结果?(2)若仅知道带电小球的电荷量-q、初动能Ek0以及AB两点的连线与电场线所夹的锐角θ三个量,对反映电场本身性质的物理量,你能求得哪些定量结果?18.(16分)如右图,在广阔的宇宙空间存在这样一个远离其他空间的区域,以MN为界,上部分的匀强磁场的磁感应强度为B1,下部分的匀强磁场的磁感应强度为B2,B1=2B2=2B0,方向相同,且磁场区域足够大.在距离界线为h的P点有一宇航员处于静止状态,宇航员以平行于界线的速度抛出一质量为m、带电荷量为-q的球,发现球在界线处速度方向与界线成60°角,进入下部分磁场,然后当宇航员沿与界线平行的直线匀速到达目标Q点时,刚好又接住球而静止.求:(1)小球在两个磁场中运动的轨道半径大小(仅用h表示)和小球的速度;(2)宇航员的质量(用已知量表示).18.(17分)如右图所示,相距为d的L1和L2两个平行虚线是上下两个匀强磁场的边界.L1上方和L2下方都是垂直纸面向里的磁感应强度为B的匀强磁场.M、N两点都在L2上.M点有一放射源,其放射性元素衰变前原子核的质量为m,放出一个质量为m1、带电荷量为-q的粒子,产生的新原子核质量为m2.放出的粒子以初速度v与L2成30°角斜向上射入,经过一段时间恰好斜向上通过N点(不计重力).求:(1)该原子核发生衰变过程中释放的核能;(2)说明过N点的速度大小和方向,并求从M到N的时间及路程;(3)若从M点射出的速度大小变为2v,粒子还能否经过N点?(计算说明)的长木板B和质量m=2kg的小物体A以相同的速度v0=5 m/s沿光滑水平面向右运动,已知A、B间的动摩擦因数μ=0.2,B的右端有一固定的竖直挡板,B与竖直挡板的碰撞时间极短,B碰后以原速率返回(设B板足够长),求:(1)碰后A、B再次稳定后的速度;(2)碰后到A、B速度不再发生变化的瞬间,B板与竖直挡板的距离;(3)若碰后A没从B上掉下来,则B的长度至少多长?23.(17分)如图所示,在宽L=10 cm的有界区域里存在相互正交的匀强电场和匀强磁场,MN为与电场线平行且距匀强电、磁场右侧边界d=15 cm的荧光屏.一束带正电的粒子以垂直于电磁场的水平速度射入场中而不改变方向打在荧光屏上的O点.当去掉电场时粒子穿过磁场时运动方向偏离原方向5cm,不计粒子所受重力,求:(1)粒子打在荧光屏上的点距O点多远?(2)如果仅去掉磁场,粒子穿过电场时偏离原运动方向多远?最后打在荧光屏上的点距O点多远?M=2 kg的导轨,放在光滑绝缘的水平面上,另有一根质量m=0.6 kg的金属棒PQ平行bc放在水平导轨上,PQ棒左边靠着绝缘的竖直立柱e、f,导轨处于匀强磁场中,场以OO′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度都为B=0.8T.导轨的bc段长l=0.5 m,其电阻r=0.4Ω,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数μ=0.2若导轨上作用一个方向向左、大小为F=2 N的水平拉力,设导轨足够长,g取10m/s2.试求:(1)导轨运动的最大加速度;(2)流过导轨的最大电流.17.(13分)如右图所示,MN、PQ是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面.导轨左端接阻值R=1.5 Ω的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆ab,ab的质量m=0.1 kg,电阻r=0.5 Ω.ab与导轨间动摩擦因数μ=0.5,导轨电阻不计.现用F=0.7 N的恒力水平向右拉ab,使之从静止开始运动,经时间t=2 s后,ab开始做匀速运动,此时电压表示数U=0.3 V.重力加速度g=10 m/s2.求:(1)ab匀速运动时,外力F的功率;(2)ab杆加速过程中,通过R的电荷量;(3)ab杆加速运动的距离.22.(12分)如右图所示,长为L的绝缘细线两端各系一小球,球a带电荷量为+q,固定于O点;球b带电荷量为-q,质量为m.它们处在竖直向下的匀强电场中.(静电力常量为k)(1)已知b球能在竖直面内沿图中虚线所示轨道做匀速圆周运动,则它的速度至少应为多大?(2)若将电场方向改为水平向左,场强大小保持不变,让b球在一条倾斜的且轨道平面与原来垂直的轨道上做变速圆周运动,则轨道平面与水平面的夹角为多大?若在此轨道上b球刚好做圆周运动,b球运动过程中的最大速度为多少?。