连铸理论及工艺-结晶器保护渣
- 格式:pdf
- 大小:4.21 MB
- 文档页数:89
结晶器保护渣的性能和特性1.简介在连铸生产中结晶器保护渣起着主要作用。
保护渣从结晶器顶部加入,向下移动逐步形成烧结层,熔融层和液渣层(见图1)。
液渣渗入结晶器铜板与坯壳之间,润滑坯壳。
但是,大部分的液渣进入铜板与坯壳之间后,遇水冷结晶器铜板凝结并形成玻璃状的固态渣膜(大约2毫米厚)。
薄液渣膜(大约0.1毫米厚)与坯壳一起移动并为其提供液态润滑。
同时,玻璃渣也可部分结晶。
一般认为固渣膜附在结晶器壁上,或者如果移动,一定比坯壳的速度慢得多。
结晶器振动防止坯壳粘结在结晶器上。
固渣膜的厚度和特性决定水平热传递。
总之,液渣膜控制润滑,固渣膜控制水平热传递。
图1:结晶器内形成的各种渣层一般认为液渣层厚度dpool应超过振幅,才能保证保护渣渗透良好(如坯壳的润滑),一般建议采用厚度>10毫米。
液渣层厚度影响渗入结晶器铜板与坯壳之间的液渣量和从钢水进到液渣中的夹杂物数量。
连铸生产中保护渣有下列功能: 1) 2) 3) 4) 5)防止弯月面钢水被氧化保温,防止弯月面钢水表面凝结提供液渣润滑坯壳对浇铸钢种提供最佳水平热传递吸附钢水中的夹杂物所有上述功能都很重要,但在日常生产中最重要的润滑和水平热传递。
影响保护渣性能的基本因素如下:・浇铸条件(拉速,Vc,振动特性)・钢种和结晶器尺寸・结晶器液位控制(可导致振痕等)・钢流,其紊动可导致多种问题,如气泡和夹渣由此可见,要有效执行上述工作需要优化保护渣的物理性能。
结晶器保护渣的构成如下:70% (CaO+SiO2), 0-6%MgO,2-6%Al2O3, 2-10%Na2O(+K2O), 0-10%F带有其他添加物,如 TiO2, ZrO2, B2O3, Li2O和MnO。
碱度(%CaO/%SiO2)范围为0.7-1.3。
碳以焦碳,碳黑和石墨方式加入(2-20%),1)可控制保护渣的熔化速度,2)可在结晶器上部形成CO(g),防止钢水氧化。
碳以固定碳方式存在于保护渣中,因而可防止保护渣结块,直到最后氧化掉。
连铸保护渣技术,作为连铸生产的关键技术之一,对连铸生产的顺行和铸坯质量有着至关重要的影响,尤其是铸坯表面缺陷,基本上都是在结晶器内形成的,与保护渣有直接关系。
近几年来,该技术在实践中,如空心颗粒渣等的开发和广泛使用,对铸坯质量的改善、连铸生产工艺的稳定起了很大促进作用。
同时渣的基础性能如润滑和传热特性的研究也一直受到人们的重视。
一、不同钢种对保护渣性能设计要求不同成分的钢种.其钢水特性及其凝固特点有别,从而决定了对保护渣性能方面的要求。
1、低碳钢首先钢中w(C)<0.08%或0.06%。
这类钢高温机械性能好,凝固过程中不存在严重的相变体积变化,内应力及裂纹敏感性小,故通常以较高拉坯速度进行生产,以提高生产率。
基于低碳钢本身的凝固特点和质量要求,设计时主要考虑渣的润滑及消耗。
较高拉速要求尽量增大结晶器热流,加速钢水凝固,防止粘结漏钢,这要求保护渣结晶温度低、凝固温度适中,以确保低碳钢结晶器保护渣在950℃以上处于非晶体状态,使发生粘结漏钢的可能性最小。
在高速浇注时,为使足够的液态保护渣能流入铸流和结晶器内表面之间的区域,确保良好的润滑和足够的消耗,通常保护渣粘度选择较低的范围。
另外,此类钢种初生铁素体坯壳中[P]、[S]偏析小,初生坯壳强度高,铸坯振痕较深,故应使用保温性能较好的保护渣,提高弯月面初生坯壳温度,有利于减轻振痕过深带来的危去。
因此,连铸低碳钢满足以上各要求,就要通过设计具有一定的传热性能、良好的保温性能、良好的非金属吸收、良好的润滑和性能稳定的保护渣来获得。
2、中碳钢中碳钢钢水凝固过程中发生己δ→γ相变,体积强烈收缩,此钢种裂纹敏感性大,容易产生表面裂纹,特别是高拉速时。
避免纵横向裂纹是首要考虑的问题,为此,中碳钢用保护渣设计的重点应放在控制从铸坯传往结晶器的热流上,限制结晶器热通量,希望保护渣具有较大热阻。
因此,应选用凝固温度高、结晶温度也高的保护渣,利用结晶质膜中的“气隙”,使保护渣传热速度减缓,有助于减小铸坯在冷却过程中产生的热应力。
板坯连铸结晶器保护渣卷渣及其影响因素的研究随着不断发展的钢铁行业,板坯连铸结晶器已经成为一种常用的设备,用于生产高品质的板坯。
然而,一些现象,如回转炉渣卷渣的破裂和渗漏,已经引起广泛的担忧。
因此,有必要研究这种现象的影响因素,以保护渣卷渣免受损害。
研究表明,连铸结晶器中出现渣卷渣破裂和渗漏的原因有很多。
首先,主要原因是结晶器内部压力太大,导致渣卷渣破裂。
其次,渣卷渣不足,以及渣卷渣中残存的气体,也会导致渣卷渣破裂。
此外,渣卷渣不能正确维护,也会导致渣卷渣破裂。
另外,也存在其他一些因素,会导致渣卷渣渗漏。
首先,结晶器周围的温度过高,导致渣卷渣失去弹性,从而导致渗漏。
其次,渣卷渣中残存的气体不能被及时排出,也会导致渗漏。
此外,表面污染也会导致渣卷渣渗漏。
要保护渣卷渣,最主要的是正确维护。
首先,应检查结晶器内部压力,以确保安全,并确保渣卷渣可以有效地均匀分布。
其次,渣卷渣必须按规定的时间、频率和数量添加和更换,以确保渣卷渣充足。
此外,必须确保渣卷渣处在适宜的温度下,以减少渗漏。
最后,要定期检查渣卷渣表面,确保表面无污染危害。
本文研究了板坯连铸结晶器保护渣卷渣的影响因素。
渣卷渣可能会破裂和渗漏,这种现象的原因有多种,其中主要原因是结晶器内部压力太大,以及渣卷渣不足、渣卷渣中残存的气体以及维护不当。
要保护渣卷渣,主要是正确维护,如检查结晶器内部压力,按时、按频率、按数量添加和更换渣卷渣,保持温度适宜,以及定期检查渣卷渣表面,以防止渣卷渣受损害。
以上就是关于《板坯连铸结晶器保护渣卷渣及其影响因素的研究》的3000字文章。
连铸保护渣的生产工艺连铸保护渣是连铸过程中不可或缺的关键辅助材料,其作用主要是在钢铁液与连铸机结晶器之间形成一层保护层,防止钢液氧化,并保证钢液稳定地流入结晶器,以保证连铸过程的正常进行。
连铸保护渣的生产工艺包括原料选择、配方设计、生产工艺、炉渣调理等几个方面。
首先是原料选择。
连铸保护渣的主要原料是渣钢、炉渣和添加剂等。
渣钢是由废钢进行冶炼得到的一种含有铁元素的材料,可以作为连铸保护渣的基础原料。
炉渣是冶炼过程中产生的一种富含氧化物的物质,可以提供向连铸钢液中添加氧化物的功能。
添加剂是根据具体要求选择的,可用于调整保护渣的流动性、温度、粘度和氧化物的含量等。
其次是配方设计。
连铸保护渣的配方设计主要考虑到保护渣的基本性能和冶炼过程的要求。
一般情况下,保护渣的基本性能包括熔点、粘度、密度、流动性、氧化性和还原性等。
配方设计的关键是确定渣钢、炉渣和添加剂的比例,以及各种原料的化学成分。
这需要根据不同钢种、冶炼工艺和连铸机设备的特点进行合理的配方设计。
然后是生产工艺。
连铸保护渣的生产工艺主要包括预处理、原料混合、炉渣调理、炉渣铸造和炉渣加工等步骤。
预处理主要是对原料进行筛分、破碎和干燥等处理,以提高原料的活性和可操作性。
原料混合是将经过预处理的渣钢、炉渣和添加剂按一定比例混合均匀。
炉渣调理是将混合好的原料送入炉渣铸造中,通过炉体的高温熔融和冷却过程,形成连铸保护渣。
最后是炉渣加工。
连铸保护渣在生产过程中需要经过一系列加工步骤,以获得符合要求的颗粒度和流动性。
加工步骤主要包括炉渣破碎、筛分、磁选和加热等。
炉渣破碎是将铸造好的保护渣进行碾压和破碎,得到符合要求的颗粒度。
筛分是将破碎后的保护渣按不同颗粒大小进行分级,以获得合适的颗粒粒径。
磁选是对炉渣中的磁性物质进行去除,以保证保护渣的纯净度。
加热是对筛分好的保护渣进行烘干,以提高保护渣的流动性和反应活性。
总的来说,连铸保护渣的生产工艺主要包括原料选择、配方设计、生产工艺和炉渣加工等几个方面。
对连铸结晶器保护渣渣层的分析[摘要]连铸结晶器保护渣的主要功能包括:使结晶器壁与铸坯壳之间保持润滑;控制结晶器与铸坯之间的热交换;保持结晶器顶部处于绝热状态;防止钢水二次氧化;吸收钢水中上浮到液面的夹杂物。
其中两个最为重要的功能是保持结晶器壁与坯壳间的润滑和控制传热。
[关键词]连铸结晶器保护渣铸坯中图分类号:tf777.1 文献标识码:a 文章编号:1009-914x (2013)07-0256-011、引言固态结晶器保护渣的结晶比对铸坯与结晶器之间的热流量有重要影响。
某些特定钢种的保护渣是根据该钢种特有的冷却条件而设计的。
有鉴于此,结晶器保护渣的组织结构和凝固特性具有重要意义。
结晶器保护渣中的晶体成分愈多,结晶器保护渣结构愈疏松,从而降低保护渣内的辐射传热。
中碳钢结晶器保护渣具有较高的结晶比,保护渣层内的传热较为均匀,有利于降低连铸坯内的纵裂纹的形成。
结晶器凝固保护渣的取样位置位于结晶器以下部位。
通过分析渣样横截面可以看出沿渣膜厚度方向存在着不同的结晶形态。
对于非中碳钢结晶器保护渣而言,并不需要太高的保护渣结晶比。
实际上在铸坯壳出结晶器之前要达到足够的厚度常常需要较高的传热速率。
因为浇铸这些钢种时的拉坯速度较高(>1.3m/min)。
现已对结晶器保护渣的结晶情况即结晶倾向进行了实验室和工厂的实验研究。
试验室的大部分试验研究,均是在对保护渣控制加热或控制冷却的试验条件下进行,然后再对凝固的保护渣进行分析研究。
在对保护渣的结晶研究中广泛使用了差热分析方法(dta)。
在本研究中,为了确定液态结晶器保护渣在冷却时的结晶温度,在实验时将保护渣的温度变化与参照试样进行了对比。
采用差热分析的方法研究表明,结晶器保护渣的结晶趋势随cao/sio2的比值、li2o、tio2和zro2含量的增加而增强,随b2o3含量的减少而增强。
fonseca等人对自己所采取的保护渣样进行了研究,结果表明,中碳钢保护渣结晶层厚度和保护渣层总厚度均比低碳钢保护渣高。
连铸保护渣2连铸保护渣是直接影响连铸稳定生产和改善铸坯质量的一种功能性消耗材料,它具有绝热保温,防止再氧化,吸收夹杂物,均匀传热,润滑坯壳等功能,在连铸工艺中起着至关重要的作用,由于保护渣的显著作用,各国连铸工作者对保护渣都非常重视.1保护渣的基本特性1.1保护渣的熔融特性保护渣在结晶器内的熔融过程示意图(略).保护渣在熔融状态时自上而下可形成粉渣层,烧结层及熔渣层3层结构,起绝热保温,防止再氧化,吸收夹杂物的作用;在结晶器与坯壳之间形成固态渣膜(玻璃质层,结晶质层)和液态渣膜两层结构,起到"润滑"和"控制传热"作用,靠结晶器一侧是固态层,造坯壳一侧是液态层;固态层中进一步分为玻璃质层和结晶质层,且有结晶粒度的差异.渣膜在厚度方向上的不同结构层,有着不同的"润滑"和"传热效应".日本NKK公司的一项研究证实[21,通过提高结晶温度可加快渣的结晶速度(实质上是增加渣膜中的结晶质层厚度),由此开发出一种可减少中碳钢表面纵裂的新型保护渣.然而,由于玻璃质层的组分质点是无序排列的,振动范围较大,体系内能也较大,因而热阻较小,对控制传热的影响较小;相反,结晶质层的热阻较大,对控制传热的影响较大.根据不同浇铸条件(钢种,断面,拉速等)对结晶器传热的不同要求,调整渣膜中玻璃质层和结晶质层的比例,可以达到改善坯壳向结晶器的传热,从而达到控制铸坯表面缺陷的目的.LZ保护渣的冶金特性1.2.1粘度粘度是保护渣的一个重要参数,粘度太大或太小,都会使渣膜厚薄不均,润滑传热不良,甚至引起收稿日期2003折-21作者简介:饶添荣(1974)男,福建龙岩人,工程师,从事炼钢连铸工艺工作.万方数据106江西冶金2003年12月坯壳悬挂撕裂.粘度与温度的关系式为[[3171二A" T"exp(B/T)式中,7为粘度〔泊);T为绝对温度;A,B为常数.对于一定成分的渣,随温度降低粘度呈突然性增大趋势,所以一般希望从弯月面到出结晶器的坯壳表面温度应大于1 150℃,且要求渣粘度不会发生突变,这对保持均匀渣膜厚度,确保良好润滑极其重要.1.2.2表面张力熔渣的表面张力和金一渣的界面张力决定了熔渣润湿钢的能力,它影响夹杂物分离,夹杂物吸收, 渣膜的润滑和铸坯的表面质量,是一项重要的冶金特性.结晶器液面有保护渣层覆盖时结晶器中钢液弯月面半径与表面张力和界面张力的关系为[[31y, = 5.43 x 10-2.二一./P,一P.) la口._.=a二一少二coso式中,Y.为弯月面半径;'_,为金一渣界面张力; ..,,.为钢,渣表面张力;9为润湿角;P. "o.为钢, 渣密度.若Y.大,弯月面凝固壳受钢水静压力作用贴向结晶器壁就越容易,润滑良好,坯壳裂纹也就难于发生.若Y.小,就会破坏弯月面的薄膜弹性性能,铸坯易于发生裂纹,夹渣等表面缺陷.1.2.3熔点与熔化速度保护渣的熔点的基本原则是必须低于结晶器内的钢水温度,只有这样保护渣才能熔化,一般为950 ℃一1200℃,主要取决于保护渣的的原料组成及其化学成分.熔化速度决定钢液面上形成熔渣层厚度和渣的消耗量.熔化速度过慢,形成熔渣层过薄,渣膜不均匀,润滑传热就不好;熔化速度过快,粉渣层很快消失,熔渣层易结壳,渣膜厚度增加,使传热减慢,坯壳减薄而易产生裂纹.因此,必须合理控制保护渣的熔化速度.保护渣熔化速度一般是由其成分中的炭粒子来控制完成的,控制能力的强弱决定于炭粒子的种类和数量[41.表现在它对造渣材料的分融能力和对造渣材料生成的熔体的流动阻滞能力.炭粒子的原材料常见的有炭黑和石墨.炭黑在温度较低区域里有很强的分融能力和控制效率,在高温区其作用却大为降低;石墨开始氧化的温度高且慢,控制高温能力强,故有延缓保护渣的烧结和熔化功能.1.2.4吸收溶解夹杂物的能力保护渣碱度提高,可改善保护渣吸收和溶解钢中夹杂物的动力学条件而有利于吸收夹杂物,但碱度过高,熔渣中易析出钙铝黄长石(2CaO从qSi02),枪晶石((3CaO.2Si02 - CaF2 )等高熔点物质,使熔渣的析晶温度和析晶能力增高,恶化保护渣的玻璃化特性,破坏了熔渣的均匀润滑和传热,引起铸坯缺陷甚至拉漏,故碱度控制应合理.2保护渣的选择与应用2.1保护渣原料的选择保护渣的主要成分为.O, SiO2, A1203, 990,Fe2O3, N% 0, K2 0, Li20, CaF2以及炭粒,Ca()和Si02 约占60%一70% , CaO/Si马(即碱度)之比通常在0.8一1.2.加人Na20, Cal,是为了降低熔化速度和粘度,炭粒起隔离熔滴,调节熔化速度的作用.保护渣原料的选择要做到组成合理,成分稳定;既要满足连铸质量的需要,又要经济节约,尽可能就地取材,充分利用当地的废弃资源.例如国内某些保护渣厂常用的保护渣原料有玻璃粉(SiO2大于70% , Na20大于13%),水泥,高炉渣,烟道灰,固态水玻璃,苏打,萤石等[31,由这些原料按照不同比例配制成需要的渣料.表1,表2分别示出了保护渣常用的基料及助熔剂的化学成分.表1保护渡常用基料的化学成分化学成分,%基料—si场Cs0鸽乌.鲍pMn0 Na,O残伪高炉渣25一3933一45 s一15 2一8 0.1一1.0 < 1电厂灰45一60 2一5 10一20 1一4 2一6 3一8'钾土60-65 1一2 1〕一IS 5一7 <13" 1一2水泥熟料19一2260一65 5-7 1一4 <6白渣45一5518一22 <9 0.25%的硬钢)一1.0,C为13%一14%,q1,为..3 Pa-s(用于软钢)一0.45(用于硬钢),熔渣层厚度3一5.5 mmo颗粒渣不适用于小方坯,因其熔化均匀,宜用于MCAK钢板坯和大方坯.德国Sulukl. k等人认为[91,保护渣中MnO为3 . 5 % , CaO/SiO2为0.9,11.为..25 Pa "s, Ta为900 ℃,T.为1 025℃,能满足c大于等于0.35%,Mn大于等于0.65%的大断面圆坯的表面质量要求.马钢连铸圆坯主要用于生产车轮轮箍用钢,此类钢由于含碳量,含锰量均较高,因此要求钢水纯净度很高,尤其是钢中气体([01, [H]-, [N])的含量,要求控制在很低的水平,以至冶炼时加Al量较高,在保护浇铸效果不佳的情况下,A1203和AIN夹杂将进一步增加,使圆坯表面易形成线状缺陷.浇铸这类钢,保护渣既要有好的润滑特性,又要有低的传热强度;因此,保护渣粘度要适当高些(,,为0.30-0.50 Pa- s);为了防范点状凹陷和确保有良好的吸收夹杂物的能力,碱度要适中(R为0. 90) [301渣中A12 Os含量要低些;另一方面要确保有一定渣耗量(0.45一0.70甲t) a2.2.3异型坯用保护渣马钢引进的3机3流异型坯/矩型坯连铸机,铸坯尺寸为异型坯:750 mm x 450 mm x 120 mm, 50 rim x 300 mm x 120 mm;矩型坯:;250 mm x 380 mm.因砂打石硼苏萤万方数据108江西冶金2003年12月其独特的截面形状和复杂的连铸工艺决定了对保护渣要求更为严格,马钢根据异型坯生产特点,选择了3类保护渣进行了生产试验研究:(1)低碱度(0.8),较高熔点(1 171℃)和粘度(1.39 Pa-s);(2)中碱度(1.02),较高熔点(1 188℃)和粘度(1.10 Pa-s);(3)中高碱度(1.12),较低熔点(1 145 9C)(0.84Pa- s);把这3类保护渣的理化性能与从韩国进口的相比较,第三类保护渣的效果与其一致,有利于改善异型坯表面质量.韩国异型坯保护渣成分如表3所示.根据马钢的生产实践,在设备条件和操作因素不变的情况下,异型坯表面裂纹与保护渣粘度和拉速有关,对于小断面异型坯控制,I .叽在0.5一0.6Pa " s " m/min;大断面控制在0.5 Pa "s"m/min时,能够防止异型坯腹板纵裂.表3韩国异型坯保护渣成分化学成分,%企业'ISQi0.50073Px01:::竺喻011光阳Indl印】s;oi Al,场31.36 12.2624.69 13.181._843491Fei 011.533.137.8024.2035.8219.56M酥】2.472.291._000.79Na}00.254.531._120.792.2.4溥板坯连铸用保护值墨西哥Hylsa公司的CSP连铸机,铸坯厚50mm,低碳钢拉速3.0一5.5 m/xnin.其所用保护渣, 开浇时用发热型渣,连浇时用球形空心颗粒渣(R为0.86, A1203为8.0% , Na2O+K20+Lie.为12%,F为6.5%,1},为0.18 Pa "s, Ta为1 300℃,T,为1 070℃,渣耗.095 kg) [u],这种开浇时和A铸时分别用不同类保护渣的作法,在实际使用中的效果很好,在薄板坯连铸中具有推广价值.马钢CSP薄板坯连铸机预计于2003年10月份建成投产,规格0.8一12.7二x 900一1 600 mm.由于CSP工艺具有拉速快,凝固快,易产生粘结漏钢以及铸坯表面质量差等特点,借鉴前人的经验,对保护渣的选用将综合考虑下列因素.(1)为了防止钢液二次氧化和确保具有良好的绝热保温性能,选择有良好铺展性,熔化均匀性和抗波动性的保护渣;(2)生产超低碳钢时,为了防止钢液增C,应采用低C或无C且熔化性能好的保护渣;(3)应有良好的吸收溶解A12 03夹杂的性能;(4)成渣快,玻璃化率高,润滑性能好,传热性能要均匀稳定;(5)环保和高性价比.3结语(I)保护渣具有绝热,保温,防止氧化,均匀传热,润滑和吸收夹杂物功能;(2)保护渣原料的选择应组成合理,成份稳定,既要满足连铸质量的需要,又要经济节约,尽可能就地取材,充分利用当地的废弃资源;(3)保护渣的选用应根据钢种,断面,拉速和振动参数等因素而定,在生产实践中应区别对待; (4)高拉速下,可选择低熔点,高熔速,低粘度,低析晶率和低析晶温度保护渣;(5)异型坯连铸保护渣,控制v K小断面在0.5一0. 67 Pa " s " m/min,大断面在0.5 Pa "s"m/min, 能够防止异型坯腹板纵裂;(6) CSP连铸用保护渣可采用低熔点,低粘度,低结晶温度,熔速快和玻璃性好的多组元保护渣。
连铸理论及工艺
流入坯壳和结晶器间隙内的液态渣形成渣膜,以控制铸坯向结晶器传热速度,保持坯壳均匀生长。
2010-11-293
两
这是一个以硅灰形态存在的低熔化温度区,,恰与保护渣碱度要求相
℃:
:
A
B
11
几种保护渣成分范例:
2010-11-2917
几种主要助熔剂对保护渣熔化温度的影响规律
熔化速度
保护渣熔化速度的影响因素
31
32
凡是能向炉渣中提供多余氧离子和取代氧离子的物质,均可以使炉渣粘度降低。
这些物质包括几乎所有的碱金属氧化物和碱土金属氧化物。
保护渣粘度测定方法
z 熔渣吸收Al 2O 3的量主要取决于
α。
本图表示的是根据上式计算得到的不同α(或β)的保护渣,Al 2O 3随时间的变化。
其中α和β具有相同的意义,β的量纲为g/(cm 2.s)。
α和β表征保护渣吸收Al 2O 3能力的大小,其值主要受化学成分的影响。
40
2010-11-2941
2010-11-2950。