第三讲 代数式、整式与因式分解
- 格式:ppt
- 大小:1.20 MB
- 文档页数:14
知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2.整式的加减的实质:合并同类项。
3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4.乘法公式:①平方差公式:()()22b a b a b a -=-+。
②完全平方公式:()2222b ab a b a +±=±。
5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
班级:________姓名:________第3课时代数式、整式与因式分解基础题1. (2022湘潭)下列整式与ab2为同类项的是()A. a2bB. -2ab2C. abD. ab2c2. (人教七下P125练习第2题改编)某校七年级举行航天知识竞赛,规定答对一题得10分,答错一题扣5分,若七年级(1)班答对了a道题,答错了b道题,则七年级(1)班的分数为()A. 5a-10bB. 5a+10bC. 10a-5bD. 10a+5b3. (2023吉林省卷)下列各式运算结果为a5的是()A. a2+a3B. a2·a3C. (a2)3D. a10÷a24. (2023扬州)若()·2a2b=2a3b,则括号内应填的单项式是()A. aB. 2aC. abD. 2ab5. (2023营口)下列计算结果正确的是()A. a3·a3=2a3B. 8a2-5a2=3a2C. a8÷a2=a4D. (-3a2)3=-9a66. (2023重庆A卷)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是()第6题图A. 39B. 44C. 49D. 547. (2023江西)单项式-5ab的系数为________.8. (2023广西)分解因式:a2+5a=________.9. (2023兰州)因式分解:x2-25y2=________.10. (2023凉山州)已知y2-my+1 是完全平方式,则m的值是________.11. [新设问——结论开放](2023舟山)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:________.12. (2023湘潭)已知实数a,b满足(a-2)2+|b+1|=0,则a b=________.13. (2023乐山)若m,n满足3m-n-4=0,则8m÷2n=________.14. 观察下列一组数:12,49,38,825,518,…,它们是按一定规律排列的,那么这一组数的第11个数是________.15. (2023长春)先化简,再求值:(a +1)2+a (1-a ),其中a =33.16. (2023舟山)已知a 2+3ab =5,求(a +b )(a +2b )-2b 2的值.17. (人教八上P112第4题改编)先化简,再求值:(a +b )2-(a -b )(a +b )+b (a -2b ),其中a =2-1,b =2+1.拔高题18. (2023随州)设有边长分别为a 和b (a >b )的A 类和B 类正方形纸片、长为a 宽为b 的C 类矩形纸片若干张.如图所示要拼一个边长为a +b 的正方形,需要1张A 类纸片、1张B 类纸片和2张C 类纸片. 若要拼一个长为3a +b 、宽为2a +2b 的矩形,则需要C 类纸片的张数为( ) A. 6 B. 7 C. 8 D. 9第18题图19. (2023济宁)已知实数m 满足m 2-m -1=0,则2m 3-3m 2-m +9=________. 20. (2023福建)已知1a +2b =1,且a ≠-b ,则ab -a a +b的值为________.创新题21. (2023河北)根据下表中的数据,写出a的值为________,b的值为________.x2 n结果代数式3x+1 7 b2x+1a 1x22. (2023丽水)如图,分别以a,b,m,n为边长作正方形,已知m>n且满足am-bn=2,an+bm=4.(1)若a=3,b=4,则图①阴影部分的面积是________;(2)若图①阴影部分的面积为3,图②四边形ABCD面积为5,则图②阴影部分的面积是________.图①图②第22题图1. B2. C3. B【解析】逐项分析如下:选项逐项分析正误a2与a3不是同类项,A×无法合并4. A5. B 【解析】A . a 3·a 3=a 6≠2a 3,故此选项不符合题意;B . 8a 2-5a 2=3a 2,此选项符合题意;C . a 8÷a 2=a 6≠a 4,故此选项不符合题意;D . (-3a 2)3=-27a 6≠-9a 6,故此选项不符合题意.6. B 【解析】由题图可知,第①个图案木棍根数为4+5×1=9(根),第②个图案木棍根数为4+5×2=14(根),第③个图案木棍根数为4+5×3=19(根),第④个图案木棍根数为4+5×4=24(根),…,由此规律可知,第⑧个图案中木棍根数为4+5×8=44(根).7. -58. a (a +5)9. (x +5y )(x -5y )10. ±2 【解析】∵y 2-my +1是完全平方式,∴-m =±2,解得m =±2.11. x 2-1(答案不唯一) 【解析】∵x 2-1=(x +1)(x -1),因式分解后有一个因式为(x +1),∴这个多项式可以是x 2-1(答案不唯一).12. 12 【解析】∵(a -2)2+|b +1|=0,∴a -2=0且b +1=0,解得a =2,b =-1,∴a b =2-1=12.13. 16 【解析】8m ÷2n =23m ÷2n =23m -n ,∵3m -n -4=0,∴3m -n =4,∴8m ÷2n =24=16. 14.1172 【解析】12=24=2×1(1+1)2,49=2×2(2+1)2,38=616=2×3(3+1)2,825=2×4(4+1)2,518=1036=2×5(5+1)2,…,∴这一组数的第n 个数是2n (n +1)2,当n =11时,2n (n +1)2=2×11(11+1)2=22122=1172. 15. 解:原式=a 2+2a +1+a -a 2 =3a +1, 当a =33时,原式=3×33+1=3+1. 16. 解:原式=a 2+2ab +ab +2b 2-2b 2 =a 2+3ab , ∵a 2+3ab =5, ∴原式=5.17. 解:原式=a 2+2ab +b 2-(a 2 -b 2)+ ab -2b 2 =a 2+2ab +b 2-a 2+b 2+ ab -2b 2 =3ab ,当a =2-1,b =2+1时, 原式=3×(2-1)×(2+1)=3.18. C 【解析】长为(3a +b )、宽为(2a +2b )的矩形的面积为(3a +b )(2a +2b )=6a 2+2b 2+8ab ,需要6张A 类纸片,2张B 类纸片和8张C 类纸片.故选C .19. 8 【解析】∵m 2-m -1=0,∴m 2-m =1,∴2m 3-3m 2-m +9=2m (m 2-m )-m 2-m +9=2m -m 2-m +9=m -m 2+9=-(m 2-m )+9=-1+9=8.20. 1 【解析】∵1a +2b =1,∴b +2a ab =1,∴ab =2a +b ,∴ab -a a +b =2a +b -a a +b =a +b a +b=1.21. 52,-2 【解析】根据表格可知,当x =2时,2x +1x =2×2+12=52=a ;当x =n 时,2n +1n =1,解得n=-1(使分母不为0,符合题意),当x =n 时,3n +1=b ,将n =-1 代入,得b =-2.22. (1)25; (2)53 【解析】(1)S 阴影=a 2+b 2=32+42=25;(2)由题图①得a 2+b 2=3,由题图②得S 四边形ABCD=(m +n )22=5,∴(m +n )2=10,∴m 2+n 2+2mn =10.由am -bn =2,可知(am -bn )2=4,化简,得a 2m 2-2abmn +b 2n 2=4①,由an +bm =4,可知(an +bm )2=16,化简,得a 2n 2+2abmn +b 2m 2=16②,①+②,得(a 2+b 2)(m 2+n 2)=20,∴m 2+n 2=203,∴S 阴影=5-12(m 2+n 2)=53.。
第三节 代数式、整式与因式分解知识点一:代数式及相关概念1. 代数式(代数式按定义分类)整式里有单项式、多项式两种。
共学了加减乘除四种运算。
乘法运算整式 有同底数幂的乘法、单项式x 单项式,单项式x 多项式,多项式x 多有理式 项式,除法运算有同底数幂除法,单项式除以单项式,多项式除以单项式。
代数式分式里只学了分式的加减乘除运算。
分式无理式 只学了二次根式的运算(包括加减乘除)变式练习1:已知方程x -2y+3=8,则整式x -2y 的值为( )A. 5B. 10C. 12D. 15【解析】A ∵x -2y+3=8,∴x-2y =8-3,即x-2y =5.总结:求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
变式练习2:按下面程序计算:输入x =3,则输出的答案是______.【解析】12 当输入x =3时,先立方得27,再减3得24,再除以2得12.或者由程序可列出式子为:23x x ,把x =3代入得12. 总结:求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
2.整式 (单项式、多项式)(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数. 。
如36x 4y 3z+3x 5yz 3-4xy-1叫做九次四项式。
注意:多项式的升降幂排列:指的是按某一个字母的指数从大到小排列叫降幂排列,从小到大排列叫升幂排列。
(3)整式:单项式和多项式统称为整式.(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.观察下列等式:变式练习1:下列式子:①-3a 2;②5a-6b ;③x/8;④9/x;⑤2a 2;⑥3x 2+48x 3y ;⑦2018.其中属于单项式的是①③⑤⑦;多项式是②⑥;同类项是①和⑤.变式练习2:多项式4m 5n-5mn 2+6是六次三项式,常数项是 __6 .变式练习3: 第1个等式:a 1=11×3=12×(1-13); 第2个等式:a 2=13×5=12×(13-15); 第3个等式:a 3=15×7=12×(15-17); 第4个等式:a 4=17×9=12×(17-19); …(1)按以上规律列出第5个等式:a 5=________=____________;(2)用含n 的代数式表示第n 个等式:a n =__________=___________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.解:(1)19×11;12×(19-111) (2))12)(12(1+-n n ;)121121(21+--n n (3)1a +2a +3a + (100)=11×3+13×5+15×7+…+1199×201=12×(1-13)+12×(13-15)+12×(15-17)+…+12×(1199-1201) =12(1-13+13-15+15-17+…+1199-1201) =12(1-1201) =100201知识点二:整式的运算1.整式的加减运算整式的加减法:(1)去括号;(2)合并同类项;(3)按降幂排列。
整式与因式分解知识点梳理【例题分析】【例题1】下了各式运算正确的是()A. 2(a— 1)=2a- 1B. a2b —ab2=0C. 2a3- 3a3=a3D. a2+a2=2a2【例题2】已知4a+3b=1,则整式8a+6b- 3的值为 __________ .【例题3】分解因式:X3-9x= ___________ .【例题4】由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1 月份下降a%, 3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A. m=24(1 - a% - b%) B . m=24(1 - a%)b%C . m=24 - a% - b%D . m=24(1 - a%)(1 - b%)【例题5】分解因式:2a2- 8= ______________ .【例题6】阅读理解:用十字相乘法”分解因式2x2- x-3的方法.(1)二次项系数2=1 X2;(2)常数项-3=- 1X 3=1 X ( - 3),验算:交叉相乘之和”①②③ ©1 X 3+2X (-1)=1 1X (-1)+2 X 3=5 1X (-3)+2 X 1 = - 1 1 X 1+2X (-3)= - 5 (3)_____________________________________________________ 第③个交叉相乘之和”的结果1 X (- 3)+2 X仁-1,等于一次项系数-1 . 即:(x+1)(2x - 3)=2x2-3x+2x- 3=2x2- x- 3,则2x2-x - 3=(x+1)(2x- 3). 像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x - 12= __________________________________________ .【习题练习】2. 3-2=错误!未找到引用源。