2013年北京市高三期末数学试题分类汇编 十四、排列、组合二项式定理
- 格式:doc
- 大小:50.50 KB
- 文档页数:1
2013年高考试题分类汇编(计数、概率、二项式定理)考点1 计数问题1.(2013·北京卷·理科)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 . 962.(2013·全国大纲卷·文科)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种. 603.(2013·山东卷·理科)用0,1,2,,9十个数字,可以组成有重复数字的三位数的个数为A.243B.252C.261D.2794.(2013·四川卷·理科)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 CA.9B.10C.18D.205.(2013·重庆卷·理科)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 . 5906.(2013·全国大纲卷·理科)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答) 4807.(2013·浙江卷·理科)将,,,,,A B C D E F 六个字母排成一排,且,A B 均在C 的同侧,则不同的排法共有 种. 4808.(2013·福建卷·理科)满足,{1,0,1,2}a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对的个数为 BA.14B.13C.12D.10 考点2 概率1.(2013·安徽卷·文科)若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 D A.23 B.25 C.35 D.9102.(2013·全国卷Ⅰ·文科)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 B A.12 B.13 C.14 D.163.(2013·全国卷Ⅱ·文科)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 . 15 4.(2013·全国卷Ⅱ·理科)从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n = . 8n = 5.(2013·重庆卷·文科)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 . 23 6.(2013·浙江卷·文科)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于 .15 7.(2013·江西卷·文科)集合{}2,3A =,{}1,2,3B =,从A ,B 中各取任意一个数,则这两数之和等于4的概率是 C A.23 B.12 C.13 D.168.(2013·福建卷·理科)利用计算机产生01之间的均匀随机数a ,则事件“310a ->”发生的概率 . 23 9.(2013·陕西卷·理科)如图,在矩形区域ABCD 的,A C 两点处各有一个 通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF (该矩形区域内无其他信号来源,基 站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是 A.14π- B.12π- C.22π- D.4π 10.(2013·湖南卷·理科)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为12,则AD AB= A.12 B.1411.(2013·湖北卷·文科)在区间[2,4]-上随机地取一个数x ,若x 满足x m≤的概率为56,则m = . 314.(2013·山东卷·理科)在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为 . 13 考点3 二项式定理1.(2013·全国大纲卷·文科)8(2)x +的展开式中6x 的系数是 CA.28B.56C.112D.224 2. 2532()x x-展开式中的常数项为 A.80 B.80- C.40 D.40-3.(2013·天津卷·理科)6(x的二项展开式中的常数项为 . 15 4.(2013·全国大纲卷·理科)()()8411+x y +的展开式中的22x y 系数是 DA.56B.84C.112D.1685.(2013·四川卷·理科)二项式5()x y +的展开式中,含23x y 的项的系数是 .106.(2013·安徽卷·理科)若8(x 的展开式中4x 的系数为7,则实数a = 12. 7.(2013·辽宁卷·理科)使得(3n x+(n N +∈)的展开式中含有常数项的最小值n 为A .4B .5C .6D .78.(2013·全国卷Ⅰ·理科)设m 为正整数,2()n x y +展开式的二项式系数的最大值为a ,21()n x y ++展开式的二项式系数的最大值为b ,若137a b =,则n = BA.5B.6C.7D.89. 已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =A.-4B.-3C.-2D.-110.(2013·浙江卷·理科)设二项式5的展开式中的常数项为A ,则 A = .。
排列组合二项式定理概率统计(附高考预测)一、本章知识结构:二、重点知识回顾 1.排列与组合⑪ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.⑫ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑬ 排列与组合的主要公式 ①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A m n (m ≤n) A n n =n! =n(n ―1)(n ―2) ·…·2·1. ②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C m n (m ≤n).③组合数性质:①m n n m n C C -=(m ≤n). ②n n n n n n C C C C 2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C2.二项式定理 ⑪ 二项式定理(a +b)n =C 0n a n +C 1n a n -1b+…+C r n a n -r b r +…+C n n b n ,其中各项系数就是组合数C r n ,展开式共有n+1项,第r+1项是T r+1 =C r n a n -r b r .⑫ 二项展开式的通项公式二项展开式的第r+1项T r+1=C r n a n -r b r (r=0,1,…n)叫做二项展开式的通项公式。
⑬ 二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等,即C r n = C rn n - (r=0,1,2,…,n).②若n 是偶数,则中间项(第12+n 项)的二项公式系数最大,其值为C 2n n;若n 是奇数,则中间两项(第21+n 项和第23+n 项)的二项式系数相等,并且最大,其值为C21-n n= C21+n n.③所有二项式系数和等于2n ,即C 0n +C 1n +C 2n +…+C nn =2n .④奇数项的二项式系数和等于偶数项的二项式系数和,即C 0n +C 2n +…=C 1n +C 3n+…=2n ―1. 3.概率(1)事件与基本事件::S S S ⎧⎪⎧⎨⎨⎪⎩⎩随机事件在条件下,可能发生也可能不发生的事件事件不可能事件:在条件下,一定不会发生的事件确定事件必然事件:在条件下,一定会发生的事件基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化. (3)互斥事件与对立事件:(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件”的概率模型. 几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式: 古典概型的概率计算公式:()A P A =包含的基本事件的个数基本事件的总数.几何概型的概率计算公式:()A P A =构成事件的区域长度(面积或体积)试验全部结果构成的区域长度(面积或体积).两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率()P A 的范围为:0()1P A ≤≤.②互斥事件A 与B 的概率加法公式:()()()P A B P A P B =+ . ③对立事件A 与B 的概率加法公式:()()1P A P B +=.(7) 如果事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率是p n (k) = C k np k (1―p)n ―k . 实际上,它就是二项式[(1―p)+p]n 的展开式的第k+1项. (8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1)(012)k kn k n P X k C p p k n -==-= ,,,,,.此时称随机变量X服从二项分布,记作~()X B n p ,,并称p 为成功概率.4、统计(1)三种抽样方法 ①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性. ②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样. 系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k ,当N n(N为总体中的个体数,n 为样本容量)是整数时,N k n=;当N n不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n 整除,这时N k n'=;第三步,在第一段用简单随机抽样确定起始个体编号l ,再按事先确定的规则抽取样本.通常是将l 加上间隔k 得到第2个编号()l k +,将()l k +加上k ,得到第3个编号(2)l k +,这样继续下去,直到获取整个样本. ③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样. 分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本. (2)用样本估计总体样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为s=.有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.(4)求回归直线方程的步骤:第一步:先把数据制成表,从表中计算出211nni i i i i x y x y x ==∑∑,,,;第二步:计算回归系数的a ,b ,公式为1112211()()()n n ni i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑∑∑∑,;第三步:写出回归直线方程 y bx a =+.(4)独立性检验①22⨯列联表:列出的两个分类变量X 和Y ,它们的取值分别为12{,}x x 和12{,}y y 的样本频数表称为22⨯列联表1构造随机变量22()()()())n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)得到2K 的观察值k 常与以下几个临界值加以比较:如果 2.706k >,就有0090的把握因为两分类变量X 和Y 是有关系;如果 3.841k>就有0095的把握因为两分类变量X和Y是有关系;如果 6.635k>就有0099的把握因为两分类变量X和Y是有关系;如果低于 2.706k≤,就认为没有充分的证据说明变量X和Y是有关系.②三维柱形图:如果列联表1的三维柱形图如下图由各小柱形表示的频数可见,对角线上的频数的积的差的绝对值-较大,说明两分类变量X和Y是有关的,否则的话是无关的.||ad bc图重点:一方面考察对角线频数之差,更重要的一方面是提供了构造随机变量进行独立性检验的思路方法。
北京市各地市2013年高考数学 最新联考试题分类汇编(11)排列组合
一、选择题:
6. (北京市海淀区2013年4月高三第二学期期中练习理)一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有
A.12种
B. 15种
C. 17种
D.19种
【答案】D
(6)(北京市昌平区2013年1月高三期末考试理)在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为
A. 24
B. 36
C. 48
D.60
二、填空题:
11. (北京市房山区2013年4月高三第一次模拟理)在航天员进行的一项太空实验中,要先后实施个程序,其中程序A只能在第一或最后一步实施,程序B和C在实施时必须相邻,则实验顺序的编排方法共有 种.(用数字作答)
【答案】
三、解答题:
(20)(北京市朝阳区2013年4月高三第一次综合练习理)(本小题满分13分)
设是数的任意一个全排列,定义,其中.
(Ⅰ)若,求的值;
(Ⅱ)求的最大值;
(Ⅲ)求使达到最大值的所有排列的个数.
(20)(本小题满分13分)
最大值的所有排列的个数为,由轮换性知,使达到最大值的所有排列的个数为. ……………………………13分。
七.数列1. (2013高三数学期末西城文7)设等比数列{}n a 的公比为q ,前n 项和为n S .则“||2q =”是“627S S =”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2. (2013高三数学期末东城文理3)已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于A.1B.53C.2D.3 3. (2013高三数学期末海淀文11)数列{}n a 是公差不为0的等差数列,且268a a a +=,则55_____.S a = 4. (2013高三数学期末朝阳文9) 已知数列1,,9a 是等比数列,数列121,,,9b b 是等差数列,则12a b b +的值为 .5. (2013高三数学期末丰台文理14)右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,____(3)mn a m =≥.6. (2013高三数学期末石景山文12理11)在等比数列{}n a 中,141=,=42a a -,则公比=q ;123++++=n a a a a L .7. (2013高三数学期末朝阳文理14)将整数1,2,3,,25填入如图所示的5行5列的表格中,使每一行的数字从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .14 12,14 34,38,316…8. (2013高三数学期末东城文16)(本小题共13分)已知{}n a 为等比数列,其前n 项和为n S ,且2nn S a =+*()n ∈N .(Ⅰ)求a 的值及数列{}n a 的通项公式; (Ⅱ)若n n b na =,求数列{}n b 的前n 项和n T .9. (2013高三数学期末丰台文20)(本题共14分 )已知曲线2:2(0)C y x y =≥,111222(,),(,),,(,),n n n A x y A x y A x y ⋅⋅⋅⋅⋅⋅是曲线C 上的点,且满足120n x x x <<<⋅⋅⋅<<⋅⋅⋅,一列点(,0)(1,2,)i i B a i =⋅⋅⋅在x 轴上,且10(i i i B A B B -∆是坐标原点)是以i A 为直角顶点的等腰直角三角形. (Ⅰ)求1A 、1B 的坐标; (Ⅱ)求数列{}n y 的通项公式;(Ⅲ)令()4,2iy i i ib c a -==,是否存在正整数N ,当n ≥N 时,都有11n niii i b c ==<∑∑,若存在,求出N 的最小值;若不存在,说明理由.。
北京市2013届高三上学期期末数学试题分类汇编数列一、填空、选择题1.【北京市昌平区2013届高三上学期期末理】设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4 【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 2.【北京市朝阳区2013届高三上学期期末理】已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 .【答案】310【解析】因为121,,,9a a 是等差数列,所以121910a a +=+=。
1231,,,,9b b b 是等比数列,所以22199b =⨯=,因为1220b b =>,所以23b =,所以212310b a a =+。
3.【北京市东城区2013届高三上学期期末理】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于(A ) (B )53(C )2 (D )3 【答案】C【解析】因为36a =,312S =,所以13133()3(6)1222a a a S ++===,解得12a =,所使用316222a a d d ==+=+,解得2d =,选C.4.【北京市丰台区2013届高三上学期期末理】右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥. 【答案】5,16 12n m+ (第一个空2分,第二个空3分) 5、【北京市海淀区2013届高三上学期期末理】数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____. 【答案】18,22n +-【解析】由n mnm a a a +=可得211a a a =,所以222124a a ===。
2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D2 .(2013年普通高等学校招生统一考试山东数学(理))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279【答案】B3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B4 .(2013年普通高等学校招生统一考试大纲版数学(理))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D5 .(2013年普通高等学校招生统一考试福建数学(理))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考)10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2013年普通高等学校招生统一考试辽宁数学(理))使得()3nx n N n+⎛∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2013年上海市春季高考)36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23xy 的项的系数是_________.(用数字作答)【答案】1013.(2013年上海市春季高考)从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2013年普通高等学校招生统一考试重庆数学(理))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】59016.(2013年普通高等学校招生统一考试天津数学(理))6x ⎛⎝的二项展开式中的常数项为______.【答案】1517.(2013年普通高等学校招生统一考试浙江数学(理))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a=-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理))若8x⎛⎝的展开式中4x的系数为7,则实数a=______.【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).【答案】480。
2013高考试题解析分类汇编(理数)10:排列、组合及二项式定理一、选择题1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-D已知(1+ax )(1+x )5的展开式中x 2的系数为+a •=5,解得a=﹣1,故选D .2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为( )A .243 B .252 C .261 D .279B有重复数字的三位数个数为91010900⨯⨯=。
没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252-,选B.仁为太傅谢安的孙子试卷试题等到平定京邑后化学教案高祖进驻石头城化学教案景仁与百官同去拜见高祖化学教案高祖注视着他3 .(2013年高考新课标1(理))设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5 B .6 C .7 D .8 B因为m 为正整数,由(x+y )2m 展开式的二项式系数的最大值为a ,以及二项式系数的性质可得a=,同理,由(x+y )2m+1展开式的二项式系数的最大值为b ,可得 b=.再由13a=7b ,可得13=7,即 13×=7×,即 13=7×,即 13(m+1)=7(2m+1).解得m=6,故选B .4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168D(x+1)3的展开式的通项为T r+1=C 3r x r 令r=2得到展开式中x 2的系数是C 32=3, (1+y )4的展开式的通项为T r+1=C 4r y r 令r=2得到展开式中y 2的系数是C 42=6,(1+x )3(1+y )4的展开式中x 2y 2的系数是:3×6=18,故选D .5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14 B .13C .12D .10B方程220ax x b ++=有实数解,分析讨论①当0a =时,很显然为垂直于x 轴的直线方程,有解.此时b 可以取4个值.故有4种有序数对②当0a ≠时,需要440ab ∆=-≥,即1ab ≤.显然有3个实数对不满足题意,分别为(1,2),(2,1),(2,2).(,)a b 共有4*4=16中实数对,故答案应为16-3=13.6 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为( )A .4 B .5 C .6 D .7B展开式的通项公式为5211(3)()3k n kn kkk n kk nnT C x C xx x---+==。
第九部分 排列组合与二项式定理[知识点]一.排列与组合1.基本原理:分类计数原理 N=m 1+m 2+…+m n 分步计数原理 N=m 1m 2…m n二.二项式定理1.定理:(a+b)n =C n0a n +C n 1a n -1b+…+C n r a n -r b r +…+C n n b n ,n ∈N *2.二项式系数:C n r,r=0,1,2,,…n.3.通项T r+1=C n r a n -r b r(r=0,1,2…n) 4.二项式系数性质⑴对称性:与首末两端“等距离”的两个二项式系数相等。
即C n 0=C n n ,C n 1=C n n -1,C n 2=C n n -2,… ⑵增减性:f(r)=C n r,当r<21+n 时,C n r 递增,当r ≥21+n 时,C n r递减 ⑶最大值:n n n n n n n n n n 另:⑴二项式系数表(杨辉三角)略。
⑵1121++++++=++++m n m m n m m m m m m m C C C C C⑶(a -b)n =C n 0a n -C n 1a n -1b+C n 2a n -2b 2-…+(-1)n C n n b n⑷(1+x)n =C n 0+C n 1x+C n 2x 2+…+C n n x n[易错点提示]1.应用两个基本原理解题时,应正确区分是分类还是分步.2.解排列组合应用题时,应注意方法及分类标准的选择,并做到层次清晰,不重不漏。
3.在二项式定理中,注意系数与二项式系数、奇数项与偶数项、奇次项与偶次项的区别. C n r a n -r b r是第r+1项.4.多项式展开通常化为二项式展开处理,求展开式中某些项的系数(值)关系时,常用赋值法.5.用二项式定理计算余数问题时,余数不能为负数.如:∵233=811=(9-1)11=9k -1∴233被9除余数为8.6.证明形如:2n>2n (n ≥3且n ∈N),比较2n 与n 2 (n ∈N *)大小,此类问题常用二项式定理.。
【2006高考试题】 一、选择题(共25题) 1.(北京卷)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 (A)36个 (B)24个 (C)18个 (D)6个 2.(北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有 (A)36个(B)24个 (C)18个(D)6个 3.(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有 (A)108种 (B)186种 (C)216种 (D)270种 解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B. 4.(湖北卷)在的展开式中,的幂的指数是整数的项共有 A.3项 B.4项 C.5项 D.6项 解:,当r=0,3,6,9,12,15,18,21,24时,x的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C 5.(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种 6.(湖南卷)若的展开式中的系数是80,则实数a的值是 A.-2 B. C. D. 2 解析:的展开式中的系数=x3, 则实数的值是2,选D 7.(湖南卷)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是 A.6 B. 12 C. 18 D. 24 解析:先排列1,2,3,有种排法,再将“+”,“-”两个符号插入,有种方法,共有12种方法,选B. 8.(江苏卷)的展开式中含x的正整数指数幂的项数是 (A)0 (B)2 (C)4 (D)6 9.(江西卷)在(x-)2006 的二项展开式中,含x的奇次幂的项之和为S,当x=时,S等于( )A.23008B.-23008C.23009D.-23009 解:设(x-)2006=a0x2006+a1x2005+…+a2005x+a2006 则当x=时,有a0()2006+a1()2005+…+a2005()+a2006=0 (1) 当x=-时,有a0()2006-a1()2005+…-a2005()+a2006=23009 (2) (1)-(2)有a1()2005+…+a2005()=-23009(2=-23008,故选B 10.(江西卷)在的二项展开式中,若常数项为,则等于( ) A.B.C.D. 解:,由解得n=6故选B 11.(辽宁卷)的值为( ) A.61 B.62 C.63 D.64 解:原式=,选B 12.(全国卷I)设集合。
十四.排列组合与二项式定理
1. (2013高三数学期末海淀理7)用数字0,1,2,3组成数字可以重复的四位数, 其中有且只有一个数字出现两次的四位数的个数为
A. 144
B.120
C. 108
D.72
2. (2013高三数学期末朝阳理5)某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有
A . 140种
B . 120种
C . 35种
D .34种
3. (2013高三数学期末丰台理3) 从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 A. 1
3 B. 1
2 C. 2
3 D. 5
6
4. (2013高三数学期末西城理8)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) A.2
21 B.4
63 C.1
21 D.2
63
5. (2013高三数学期末石景山理6)若从1,2,3,…,9这9个整数中同时取4个 不同的数,其和为奇数,则不同的取法共有( )
A .60种
B .63种
C .65种
D .66种
6. (2013高三数学期末海淀理11)在261
(
3)x x 的展开式中,常数项为____.(用数字作答)。