人教版湖南省仙桃市第三中学2015年七年级下学期数学期末复习试卷(一).docx
- 格式:docx
- 大小:327.16 KB
- 文档页数:3
2015-2016学年湖北省仙桃市七年级(下)期末数学试卷一、选择题:本题共10小题,每题3分,共30分,下列各题都有代号为A、B、C、D的四个结论的代号填入下面的表格中.1.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数是()A.2B.3C.4D.52.(3分)如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3 3.(3分)下列调查中,适宜采用全面调查方式的是()A.调查市场上酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查一架“歼20”战机各零部件的质量D.调查我市市民对巴西奥运会吉祥物的知晓率4.(3分)27的立方根是()A.3B.﹣3C.9D.﹣95.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4 6.(3分)如图,已知∠BAC=90°,AD⊥BC于点D,给出以下结论:①点B到AC的垂线段就是线段AB;②AB、AD、AC三条线段中,线段AD最短;③点A到BC的距离就是线段AD的长度;④点C和点B的距离就是线段CA的长度.其中正确结论共有()A.4个B.3个C.2个D.1个7.(3分)为了了解我市中学生的体重情况,从某一中学任意抽取了100名中学生进行调查,在这个问题中,100名中学生的体重是()A.个体B.样本C.样本容量D.总体8.(3分)陈文住在学校的正东200米处,从陈文家出发向北走150米就到了李明家,若选取李明家为原点,分布以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,则学校的坐标是()A.(150,200)B.(200,150)C.(﹣150,﹣200)D.(﹣200,﹣150)9.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n210.(3分)方程2x+y=9的正整数解有()组.A.1B.2C.3D.4二、填空题:本题共6小题,每题3分,共18分,只要求写出最后结果.11.(3分)已知关于x,y的二元一次方程组的解互为相反数,则k的值是.12.(3分)在一个调查过程中,将所有数据分成四组,各个小组的频数比为1:5:4:6,则画频数分布直方图时对应的小长方形的高的比为.13.(3分)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:.14.(3分)如图,将面积为9的△ABC沿BC方向平移2个单位得到△A1B1C1,若B1C=4,则△A1B1C1的底边B1C1上的高为.15.(3分)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.16.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第63个三角形数是.三、解答题:本大题共8个小题,满分72分.17.(8分)解方程组:(1);(2).18.(8分)计算:(1);(2)||+|2﹣|+|﹣3|.19.(6分)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.20.(8分)如图,已知BC、DE相交于点O,给出以下三个判断:①AB∥DE;②BC∥EF;③∠B=∠E,请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.21.(8分)解不等式(组),并把解集在数轴上表示出来:(1)1﹣;(2).22.(10分)为了举行班级晚会,班长王芳准备去商店购买一些乒乓球做道具,并买一些乒乓球拍做奖品,到商店后她了解到,如果购买30个乒乓球和10个球拍,需要265元;如果购买40个乒乓球和8个球拍,则需要236元.(1)求每个乒乓球和每个球拍各多少钱?(2)王芳决定购买20个乒乓球,且保证购买总金额不超过200元,那么她最多可以购买多少个球拍?23.(12分)几何问题中,当图形的位置改变时,与之相关的某些数量关系也会随之发生变化,完成探究:(1)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图1,求证:∠B+∠D=∠E;(2)若AB∥CD,同一平面内另一点E在AB的上面时,如图2,试探究∠B,∠D,∠E 之间的关系式并证明你的结论;(3)若AB∥CD,同一平面内另一点E在CD的下面时,如图3,直接写出∠B,∠D,∠E之间的关系式;(4)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图4,直接写出∠B、∠D、∠E之间的关系式.24.(12分)如图1,点A的坐标为(0,3),将点A向右平移6个单位得到点B,过点B作BC⊥x轴于C.(1)求B、C两点坐标及四边形AOCB的面积;(2)点Q自O点以1个单位/秒的速度在y轴上向上运动,点P自C点以2个单位/秒的速度在x轴上向左运动,设运动时间为t秒(0<t<3),是否存在一段时间,使得S△BOQ<,若存在,求出t的取值范围;若不存在,说明理由.(3)求证:S四边形BPOQ是一个定值.2015-2016学年湖北省仙桃市七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每题3分,共30分,下列各题都有代号为A、B、C、D的四个结论的代号填入下面的表格中.1.(3分)实数﹣2,0.3,,,﹣π中,无理数的个数是()A.2B.3C.4D.5【解答】解:在实数﹣2,0.3,,,﹣π中无理数有:,﹣π共有2个.故选:A.2.(3分)如图,在所标识的角中,同位角是()A.∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3【解答】解:根据同位角、邻补角、对顶角的定义进行判断,A、∠1和∠2是邻补角,故A错误;B、∠1和∠3是邻补角,故B错误;C、∠1和∠4是同位角,故C正确;D、∠2和∠3是对顶角,故D错误.故选:C.3.(3分)下列调查中,适宜采用全面调查方式的是()A.调查市场上酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查一架“歼20”战机各零部件的质量D.调查我市市民对巴西奥运会吉祥物的知晓率【解答】解:调查市场上酸奶的质量情况适宜采用抽样调查方式;调查某品牌圆珠笔芯的使用寿命适宜采用抽样调查方式;调查一架“歼20”战机各零部件的质量适宜采用全面调查方式;调查我市市民对巴西奥运会吉祥物的知晓率适宜采用抽样调查方式;故选:C.4.(3分)27的立方根是()A.3B.﹣3C.9D.﹣9【解答】解:∵3的立方等于27,∴27的立方根等于3.故选:A.5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4【解答】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.6.(3分)如图,已知∠BAC=90°,AD⊥BC于点D,给出以下结论:①点B到AC的垂线段就是线段AB;②AB、AD、AC三条线段中,线段AD最短;③点A到BC的距离就是线段AD的长度;④点C和点B的距离就是线段CA的长度.其中正确结论共有()A.4个B.3个C.2个D.1个【解答】解:①点B到AC的垂线段就是线段AB,故①正确;②AB、AD、AC三条线段中,线段AD最短,故②正确;③点A到BC的距离就是线段AD的长度,故③正确;④点C和点B的距离就是线段BC的长度,故④错误;故选:B.7.(3分)为了了解我市中学生的体重情况,从某一中学任意抽取了100名中学生进行调查,在这个问题中,100名中学生的体重是()A.个体B.样本C.样本容量D.总体【解答】解:∵个体是指每个中学生的体重,总体是指我市中学生的体重的全体,样本是指100名中学生的体重,样本容量是100,∴在这个问题中,100名中学生的体重是样本,故选:B.8.(3分)陈文住在学校的正东200米处,从陈文家出发向北走150米就到了李明家,若选取李明家为原点,分布以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,则学校的坐标是()A.(150,200)B.(200,150)C.(﹣150,﹣200)D.(﹣200,﹣150)【解答】解:李明家为原点,分别以正东、正北方向为x,y轴正方向建立平面直角坐标系,所以李明家的坐标是(0,0),陈文家的坐标是(0,﹣150),学校的坐标是(﹣200,﹣150).故选:D.9.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n2【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.10.(3分)方程2x+y=9的正整数解有()组.A.1B.2C.3D.4【解答】解:方程2x+y=9,解得:y=﹣2x+9,当x=1时,y=7;当x=2时,y=5;当x=3时,y=3;当x=4时,y=1,则方程的正整数解有4组.故选:D.二、填空题:本题共6小题,每题3分,共18分,只要求写出最后结果.11.(3分)已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.12.(3分)在一个调查过程中,将所有数据分成四组,各个小组的频数比为1:5:4:6,则画频数分布直方图时对应的小长方形的高的比为1:5:4:6.【解答】解:∵在一个调查过程中,将所有数据分成四组,各个小组的频数比为1:5:4:6,∴画频数分布直方图时对应的小长方形的高的比为1:5:4:6,故答案为:1:5:4:6.13.(3分)观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B点,则表示B点位置的数对是:(4,7).【解答】解:如图所示,B点位置的数对是(4,7).故答案为:(4,7).14.(3分)如图,将面积为9的△ABC沿BC方向平移2个单位得到△A1B1C1,若B1C=4,则△A1B1C1的底边B1C1上的高为3.【解答】解:∵将面积为9的△ABC沿BC方向平移2个单位得到△A1B1C1,S△ABC=9,∴△A1B1C1的面积=9,∵B1C=4,∴B1C1=6,∴△A1B1C1的底边B1C1上的高为3,故答案为:3.15.(3分)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.【解答】解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.16.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第63个三角形数是2016.【解答】解:∵1+2=3,1+2+3=6,1+2+3+4=10,∴由题意可得,第63个三角形数是:1+2+3+4+…+63==2016,故答案为:2016.三、解答题:本大题共8个小题,满分72分.17.(8分)解方程组:(1);(2).【解答】解:(1),②﹣①×2得:y=﹣1,把y=﹣1代入①得:x=4,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.18.(8分)计算:(1);(2)||+|2﹣|+|﹣3|.【解答】18.(1)原式=﹣+3=3;(2)原式=2﹣+(﹣2)+(3﹣)=2﹣+﹣2+3﹣=3﹣.19.(6分)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.【解答】解:(1)237.5÷19%=1250(亿元);(2)第二产业的增加值为1250﹣237.5﹣462.5=550(亿元),画图如下:(3)扇形统计图中第二产业部分的圆心角为.20.(8分)如图,已知BC、DE相交于点O,给出以下三个判断:①AB∥DE;②BC∥EF;③∠B=∠E,请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.【解答】解:(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题;(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题;(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题真命题;以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E.∴∠B=∠E.21.(8分)解不等式(组),并把解集在数轴上表示出来:(1)1﹣;(2).【解答】解:(1)去分母,得6﹣x+3>2x,移项,得﹣x﹣2x>﹣6﹣3,合并,得﹣3x>﹣9,系数化为1,得x<3.…(3分)解集在数轴上表示如下:(2)解:解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<x≤2,解集在数轴上表示如下:22.(10分)为了举行班级晚会,班长王芳准备去商店购买一些乒乓球做道具,并买一些乒乓球拍做奖品,到商店后她了解到,如果购买30个乒乓球和10个球拍,需要265元;如果购买40个乒乓球和8个球拍,则需要236元.(1)求每个乒乓球和每个球拍各多少钱?(2)王芳决定购买20个乒乓球,且保证购买总金额不超过200元,那么她最多可以购买多少个球拍?【解答】解:(1)设乒乓球每个a元,乒乓球拍每个b元,依题意得:,解得:,答:乒乓球每个1.5元,乒乓球拍每个22元;(2)设购买乒乓球拍x个,依题意得:1.5×20+22x≤200,解得:x≤7,由于x取整数,故x的最大值为7.答:她最多可以购买7个球拍.23.(12分)几何问题中,当图形的位置改变时,与之相关的某些数量关系也会随之发生变化,完成探究:(1)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图1,求证:∠B+∠D=∠E;(2)若AB∥CD,同一平面内另一点E在AB的上面时,如图2,试探究∠B,∠D,∠E 之间的关系式并证明你的结论;(3)若AB∥CD,同一平面内另一点E在CD的下面时,如图3,直接写出∠B,∠D,∠E之间的关系式;(4)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图4,直接写出∠B、∠D、∠E之间的关系式.【解答】(1)证明:过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D;(2)∠B+∠E=∠D;证明:∵∠1是△EFB的外角,∴∠1=∠ABE+∠BED,∵AB∥CD,∴∠1=∠CDE,∴∠CDE=∠ABE+∠BED;(3)∠B=∠D+∠E,理由:∵∠1是△EFD的外角,∴∠1=∠E+∠D,∵AB∥CD,∴∠1=∠B,∴∠B=∠E+∠D;(4)∠B+∠D+∠E=360°.理由如下:过点E作EF∥AB,又∵AB∥CD,∴AB∥EF∥CD,∴∠B+∠BEF=180°,∠FED+∠D=180°,∴∠B+∠BED+∠D=360°,即∠B+∠D+∠E=360°;24.(12分)如图1,点A的坐标为(0,3),将点A向右平移6个单位得到点B,过点B 作BC⊥x轴于C.(1)求B、C两点坐标及四边形AOCB的面积;(2)点Q自O点以1个单位/秒的速度在y轴上向上运动,点P自C点以2个单位/秒的速度在x轴上向左运动,设运动时间为t秒(0<t<3),是否存在一段时间,使得S△BOQ<,若存在,求出t的取值范围;若不存在,说明理由.(3)求证:S四边形BPOQ是一个定值.【解答】(1)解:∵点A的坐标为(0,3),将点A向右平移6个单位得到点B,过点B作BC⊥x轴于C,∴B(6,3),C(6,0),S四边形AOCB=3×6=18;(2)解:存在t的值使S△BOQ<S△BOP,理由如下:∵S△BOQ=×6t=3t,S△BOP=×3(6﹣2t)=9﹣3t,∴3t<(9﹣3t)解得:t<1,当0<t<1时,S△BOQ<S△BOP;(3)证明:∵S四边形BPOQ=S四边形AOCB﹣S△AQB﹣S△BCP=18﹣(3﹣t)×6﹣×3×2t=3t+(9﹣3t)=9,∴S四边形BPOQ是一个定值.。
2015学年度春季学期期末复习试题二七年级数学一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点P (-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列四个实数中,是无理数的是( )A .38B .0C .3D .72 3.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为( )A .x >-1B .x <1C .-1≤x <1D .-1<x ≤14.在下列各式中正确的是( )A 、2)2(-=-2B 、9±=3C 、16=8D 、22=25.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )6.如图所示,下列条件中,能判断DE ∥AC 的是( )A .EFC EDC ∠=∠B .ACD AFE ∠=∠C .43∠=∠D .21∠=∠ 7.方程53=+y kx 有一个解是⎩⎨⎧==12y x ,则k 的值是( )A .1B .-1C .0D .28.下列调查适合用抽样调查的是( )A .了解中央电视台“成语大赛”节目的收视率B .了解某校九年级全体学生的体育达标情况C .了解某班每个学生家庭电脑的数量D .“辽宁号”航母下海前对重要零部件的检查9.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD , 下列结论:① BC 平分∠ABE ;② AC ∥BE ;③ ∠BCD+∠D=90°;④ ∠DBF=2∠ABC 。
其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个10.解关于x 的不等式组⎩⎨⎧≤-<-1270x a x 的整数解有4个,则a 的取值范围是( )A.6a 7<<B. 6a 7≤<C. 6a 7≤≤D. 6a 7<≤ 二、填空题(每小题3分,共18分) 11.-3的相反数是 ,3-2的绝对值是 ,64的立方根是12.如图,直线n m //,把一块含有45°的三角板如图放置,︒=∠90BAC ,则=∠1________度。
2014-2015人教版七年级数学下册期末考试卷C及答案一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的...是()A.6m>-6 B.-5m<-5 C.m+1>0 D.1-m<22.下列各式中,正确的是( )±4 B.=-43.已知a>b>0,那么下列不等式组中无解..的是()A.⎩⎨⎧-><bxaxB.⎩⎨⎧-<->bxaxC.⎩⎨⎧-<>bxaxD.⎩⎨⎧<->bxax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图(1),在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.1000 B.1100 C.1150D.1200PCBA(1) (2)(3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A.4 B.3 C.2D.18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是()A.5 B.6 C.7D.89.如图(2),△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为()A.10 cm2B.12 c m2 C.15cm2 D.17 cm210.课间操时,小华、小军、小刚的位置如图3,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________. 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
(第3题图)2014-2015学年度七年级数学第二学期期末试卷(本卷满分120分,考试时间120 分钟)一个正确答案,请将正确答案的字母代号填入题后的括号内。
) 1.下列实数中,无理数是 ( ) A .2B .-1C .6D 2.下列命题中是假命题的是 A .负数的平方根是负数 B .平移不改变图形的形状和大小 C .对顶角相等D .若a ∥b ,c a ⊥,那么c b ⊥ 3.如图,把一个不等式组的解集表示在数轴上,该不等式组的解集为 ( )A .0<x ≤1B .x ≤1C .0≤x <1D .0>x4.若点P (1-2a ,a )的横坐标与纵坐标互为相反数,则点P一定在( ) A .第一象限B .第二象限.C .第三象限D .第四象限5.为了了解某校七年级260名男生的身高情况, 从中随机抽查了30名男生,对他们的身高进行统计分析,发现这30名男生身高的平均数是160cm ,下列结论中不正确是 ( )A .260名男生的身高是总体B .抽取的30名男生的身高是总体的一个样本C .估计这260名男生身高的平均数一定是160cmD .样本容量是306.将正整数按如图所示的规律排列,若用有序数对(m ,n )表示从上到下第m 行,和该行从左到右第n 个数,如(4,2)表示整数8,则(8,4)表示的整数是( ) A .31 B .32C .33D .417.若关于x ,y 的二元一次方程组42x y k x y k-=⎧⎨+=⎩的解也是二元一次方程102=-y x 的解,则k 的值为 ( ) A .2B .-2C .0.5D .-0.58.如图,若AB //CD ,∠BEF =70°,则∠ABE +∠EFC +∠FCD 的度数是 ( ) A .215°B .250°ABC DEF(第8题图)1 2 34 5 6 7 8 9 10……(第6题图)C .320°D .无法知道9.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD , 下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD +∠D =90°; ④∠DBF =2∠ABC .其中正确的个数为 ( ) A .1个 B .2个C .3个D .4个10.在一次小组竞赛中,遇到了这样的情况:若每组7人,则余下3人;若每组8人,则少5人,问竞赛人数和小组的组数各是多少?若设人数为x ,组数为y ,根据题意,可列方程组( ) A .7385x y x y +=⎧⎨-=⎩ B .7385y x y x =-⎧⎨=+⎩ C .7385y x y x =+⎧⎨=-⎩ D .7385y x y x =+⎧⎨=+⎩二、填空题(每小题3分,共15分) 11.写一个生活中运用全面调查的例子 .12.38-的绝对值是 ;大于2-小于2的所有整数是 . 13.线段AB 两端点的坐标分别为A (2,4),B (5,2),若将线段AB 平移,使得点B 的对应点为点C (3,-2).则平移后点A 的对应点的坐标为 . 14.已知5=a ,3=b ,且a b b a -=-,那么b a += . 15.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE , OP ⊥CD ,∠ABO =40°,则下列结论:①∠BOE =70°;②OF 平分 ∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF . 其中正确结论有 (填序号) 三、解答题(9个小题,共75分)16.(5BAFCED (第9题图)ODF BAPEC(第15题图)17.(6分)解不等式组523(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.18.(8分)已知关于x 、y 的方程组2564x y ax by +=-⎧⎨-=-⎩和方程组35168x y bx ay -=⎧⎨+=-⎩的解相同,求2014)2(b a +的值.19.(8分) 已知:如图,AD ∥BE ,∠1=∠2,求证:∠A =∠E .20.(8分)这是一个动物园游览示意图,试设计描述这个动物园图中五个景点(四种动物和南门)位置的一个方法.(请在如图所示的网格纸上建立平面直角坐标系,并写出五个景点的坐标)马南门两栖动物飞禽21.(8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上等四种情况,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.根据以上信息,请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000 袋,那么其中不合格的产品有多少袋?22.(10分)如图, 已知∠1+∠2=180o, ∠3=∠B, 试说明∠DEC+∠C=180o. 请完成下列填空:解:∵∠1+∠2=180o(已知)又∵∠1+ =180o(平角定义)∴∠2= (同角的补角相等)∴(内错角相等,两直线平行)BA C45%10%40%D图2袋数108642A B C D 色素含量图1∴∠3= (两直线平行,内错角相等)又∵∠3=∠B(已知)∴(等量代换)∴∥()∴∠DEC+∠C=180o()23.(10分)王明决定暑假期间到工厂打工.一天他到某厂了解情况,下面是厂方有关人员的谈话:厂方说:我厂实行计件工资制,就是在发给每人相同生活费的基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得a元,每月生活费为b元,求a,b的值;(2)厂长决定聘用王明.由于王明工作积极肯干,一个月收入达3166元,他该月的产量是多少?24.(12分)某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱共80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?2014—2015学年度第二学期期末考试七年级数学参考答案及评分说明三.解答题:(75分) 16.(5分)133-17.(6分)425≤<-x18.(8分)20.(8分)答案不唯一,若以南门为原点建立直角坐标系,水平向右为x 轴正方向,竖直向上为y 轴正方向,并标出原点和单位长度 …………(3分) 则:南门(0,0);两栖动物(4,1);飞禽(3,4);狮子(-4,5),马(-3,-3)(用有序数对表示位置,每个1分)……………………………………………8分 21.(8分)52-(1)20袋;……………………………………………………2分 (2)图略;9……………………………………………………………4分 (3)5%;………………………………………………………………6分 (4)10000×5%=500.………………………………………………8分 22.(10分)23.(10分)解:(1)依题意:⎩⎨⎧=+=+21003002850450b a b a …………………………………3分解得:⎩⎨⎧==6005b a ……………………………………………5分 (2)设王明的月产量比500件多x 个则600+5×500+(5+0.5)x =3166,解得12=x .……………9分答:王明本月的产量为512个.………………………………10分24.(12分)解:(1)设购进乙种电冰箱x 台,依题意得………1分1200216002000(803)x x x ⨯++-≤132000…………4分解得 x ≥14∴至少购进乙种电冰箱14台.………………………6分 (2)依题意,2x ≤803x -………………7分 解得x ≤16 由(1)知x ≥14 ∴14≤x ≤16又∵x 为正整数w W w . X k b 1.c O m∴x=14,15,16 ……………………………9分所以有三种购买方案:方案一:甲种冰箱28台,乙种冰箱14台,丙种冰箱38台;方案二:甲种冰箱30台,乙种冰箱15台,丙种冰箱35台;方案三:甲种冰箱32台,乙种冰箱16台,丙种冰箱32台. (12)分。
2015年人教版七年级下期期末数学试卷(附答案)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.=±4 B.±=4 C.=-3=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax 4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .115D .120PBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .8 9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( ) A .10 cm 2 B .12 c m 2 C .15 cm 2 D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直C 1 A 1接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________. 13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C AD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
一、选择题(每题4分,共20分)1. 下列数中,是整数的是()A. √16B. 2.5C. -3.14D. 0.0012. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 平行四边形3. 已知x + 5 = 10,则x的值是()A. 5B. 10C. 15D. 204. 下列运算中,正确的是()A. (3a + 2b) ÷ 2 = 1.5a + bB. (a - b) × c = ac - bcC. (a + b) × c = ac + bcD. (a - b) ÷ c = a ÷ c - b ÷ c5. 下列等式中,正确的是()A. 5x + 3 = 8x + 2B. 2(x + 3) = 2x + 6C. 3(x - 2) = 3x - 4D. 4(x + 5) = 4x + 20二、填空题(每题4分,共16分)6. 3.6 × 10^2 = ______7. 0.025 ÷ 0.01 = ______8. (2x - 3) + (4x + 5) = ______9. 5(x + 2) - 3(x - 1) = ______10. √(9 + 16) = ______三、解答题(每题10分,共40分)11. 解下列方程:2(x - 3) + 5 = 3x + 112. 解下列不等式:3(x - 2) < 2x + 413. 一个长方形的长是a厘米,宽是b厘米,求这个长方形的面积。
14. 已知一个数的平方是25,求这个数。
四、应用题(每题10分,共20分)15. 小明去书店买书,买了5本数学书和3本语文书,每本数学书20元,每本语文书15元,小明一共花了多少钱?16. 一辆汽车从甲地出发,以每小时60千米的速度行驶,2小时后到达乙地。
如果以每小时80千米的速度行驶,多少小时后到达乙地?五、简答题(每题5分,共10分)17. 简述有理数的加法法则。
54D3E21C BA第7题第8题2015年七年级数学下册期末测试试题1.已知a<b,则下列式子正确的是 ( )A.a+5>b+5B.3a>3b;C.-5a>-5bD.3a >3b2.如果mn<0,且m>0,那么点P(m 2,m-n)在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 ( ) A .a >b B .a <b C .a =b D .与ab 大小无关4.如图,下列能判定AB ∥CD 的条件有 ( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B .A.1B.2C.3D.45.对于点A (1,1)与点B (7,1),下列说法不正确的是 ( ) A 、直线AB 与y 轴平行 B 、直线AB 与x 轴平行 C 、将点A 向右平移6个单位长度可得到点B D 、线段AB 的长为66.在平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,已知点A(-2,1)的对应点为A ′(3,1),点B 的对应点为B ′(4,0),则点B 的坐标为: ( ) A 、(9,0) B 、(-1,0) C 、(3,-1) D 、(-3,-1)7.如图AB∥CD,则∠1= ( ) A .75B .80C .85D .958.如图,在△ABC 中,90C ∠=︒,EF//AB ,150∠=︒,则B ∠的度数为( ) A .50︒ B .60︒ C.30︒ D. 40︒9.如图,AB ∥CD ,∠BAC 与∠DCA 的平分线相交于点G ,GE ⊥AC 于点E , F 为AC 上的一点,且FA =FG =FC ,GH ⊥CD 于H.下列说法:① AG ⊥CG ; ②∠BAG =∠CGE ; ③S △AFG =S △CFG ;④若∠EGH ︰∠ECH =2︰7,则∠EGF =50°. 其中正确( )(A) ①②③④ (B) ②③④ (C) ①③④ (D) ①②④10.若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )A. m <11B. m >11C. m ≤11D. m ≥11二、填空题(每题3分,共30分)11、()25-的平方根是 ,-0.027的立方根是 。
2014—2015学年下学期期末七年级数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共36分,答案请填在题后答题栏内;第Ⅱ卷为非选择题,共64分.Ⅰ、Ⅱ卷合计100分,考试时间为90分钟.第Ⅰ卷(选择题 共36分)一.选择题(每小题3分,共36分)1.已知以下四个汽车标志图案,其中轴对称图形的个数是( ).A . 1个B .2个C .3个D .4个 2一副三角板如图叠放在一起,∠α的度数为( ). A .95° B .100° C .105° D .120°3.我们学习了怎样作一个角等于已知角,小迪发现实际的作图过程就是作一个三角形与原来的三角形全等.那么,你能说出它运用的是哪个判定三角形全等的方法呢?( ) A . AAS B . ASA C . SSS D . SAS4.一辆汽车在笔直的公路上行驶,在两次转弯后,仍在原来的方向上平行前进,那么这两次转弯的角度可以是( ) A .先右转80°,再左转100°B .先左转80° ,再右转80°C .先左转80°,再左转100° D .先右转80°,再右转80° 5.下列事件属于必然事件的是( ).A .在1个标准大气压下,水加热到100°C 沸腾B .明天我市最高气温为56℃C .中秋节晚上能看到月亮D .下雨后有彩虹6.某地区植树造林2009年达到2万公顷,预计从2010年开始,以后每年比前一年多植树2万公顷(2010年为第一年),则年植树面积y (万亩)与年数x (年)的关系是( ). A . y =2+0.5x B . y =2+x C. y =2+2x D. y =2x7.随机投掷一枚均匀的硬币,前9次都是正面朝上,第10次投掷时, ( ).第2题A .正面朝上的概率大B .反面朝上的概率大C .正面朝上和反面朝上的概率一样大D .一定是反面朝上8.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度y (cm )与燃烧时间x (小时)的关系用下图中( )图象表示.9. 下列说法正确的是( )A .三角形三条高都在三角形内B . 三角形的角平分线是射线C .三角形的三条角平分线可能在三角形内,也可能在三角形外D .三角形三条中线相交于一点10.若下列各组值代表线段的长度,则不能构成三角形的是( ). A . 3,8,4 B . 4,9,6 C . 15,20,8 D . 9,15,811. 如图,△ABC 和△ADE 关于直线l 对称,下列结论:①△ABC ≌△ADE ;②直线l 垂直平分DB ;③∠C =∠E ;④BC 与DE 的延长线的交点一定落在直线l 上.其中错误..的有( ). A .0个B.1个C.2个D.3个12.若∠A 和∠B 的两边分别平行,且∠A 比∠B 的2倍少30°, 则∠B 的度数为( ).A .30°B .70°C .30°或70°D .100°选择题答题栏: 第Ⅱ卷(非选择题 共64分)题号一二三总 分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案得分19202122232425二.填空题(每小题3分,共18分)13.在体育达标跳绳项目测试中,1min 跳160次为达标,•小敏记录了他预测时的成绩,1min 跳的次数分别为145,155,140,162,164,•则他在该预测中达标的概率是_________.14.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化。
灿若寒星制作2015学年春季学期期末复习试卷一七 年 级 数 学一、选择题:(每小题10分,共30分)1、下列各点中,在第二象限的点是( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3) 2、若b a >,则下列不等式成立的是( )A .33-<-b aB .b a 22->-C .44ba <D .1->b a 3、“4的平方根是±2”的翻译成数学表达式是( ) A .4=±2 B .-4=2 C .-4=2 D .±4=±24、已知21x y =-⎧⎨=⎩是方程mx +y =3的解,m 的值是( )A .2B .-2C .1D .-15、将一直角三角板与两边平行的纸条如图所示放置,下列结论:⑴ ∠1=∠2,⑵ ∠3=∠4, ⑶ ∠2+∠4=90°,⑷ ∠4+∠5=180°。
其中正确的个数是( )A . 1B . 2C . 3D . 4 6、不等式组⎩⎨⎧≥->+125523x x 的解在数轴上表示为( )7、下列调查:①调查一批灯泡的寿命;②调查某城市居民家庭收入情况;③调查某班学生的视力情况;④调查某种药品的药效.其中适合抽样调查的是( )A .①②③B .①②④C .②③④D .①③④8、如图,雷达探测器测得六个目标A 、B 、C 、D 、E 、F 出现。
按照规定的目标表示方法,目标C、F的位置表示为C (6,120°)、 F (5,210°);按照此方法在表示目标A 、B 、D 、E 的位置时, 其中表示不正确的是( ) A . A (5,30°) B . B (2,90°) C . D (4,240°) D . E (3,60°) 9、如图,A 、B 的坐标为(2,0)、(0,1)若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .510、若方程组⎩⎨⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2.13.8b a ,则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解是( )A .⎩⎨⎧==2.13.8y x B .⎩⎨⎧==2.23.10y x C .⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x二、填空题:(每小题3分,共18分)11、为了知道一锅汤的味道,妈妈从锅里舀了一勺汤尝尝,这种调查方式是12、已知5在两个连续整数a 和b 之间(a <b ),那么b a = 13、不等式组2425x a x b +>⎧⎨-<⎩的解是02x <<,那么a b +的值等于14、如图是重叠的两个直角三角形。
人教版七年级数学下册期末综合复习试卷(及答案)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点M (1,﹣5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①4±是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个A .1B .2C .3D .45.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°6.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )A .2B .3C .2D .37.如图,一条“U ”型水管中AB //CD ,若∠B =75°,则∠C 应该等于( )A .75︒B .95︒C .105︒D .125︒8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)九、填空题9.169=___.十、填空题10.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则a b +的值是_____. 十一、填空题11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________.十二、填空题12.如图,已知a //b ,∠1=50°,∠2=115°,则∠3=______.十三、填空题13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.十四、填空题14.一列数a 1,a 2,a 3,…,a n ,其中a 1=﹣1,a 2=111a -,a 3=211a -,…,a n =111n a --,则a 2=_____;a 1+a 2+a 3+…+a 2020=_____;a 1×a 2×a 3×…×a 2020=_____.十五、填空题15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.十六、填空题16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.十七、解答题17.计算(131252724-(2)221|十八、解答题18.已知m +n =2,mn =-15,求下列各式的值.(1)223m mn n ++;(2)2()m n -.十九、解答题19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF//BD()∴∠3+∠CAB=180°()∵∠3=∠C(已知)∴∠C+∠CAB=180°(等式的性质)∴AB//CD()∴∠4=∠EGA(两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA(等量代换)∴ED//FB()二十、解答题20.如图,已知ABC在平面直角坐标系中的位置如图所示.(1)写出ABC三个顶点的坐标;(2)求出ABC的面积;'''.(3)在图中画出把ABC先向左平移5个单位,再向上平移2个单位后所得的A B C二十一、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值. 二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 二十四、解答题24.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 二十五、解答题25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根即可得出答案.【详解】解:∵21.4 1.96=,∴1.96的算术平方根是1.4,故选:B .【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.【详解】64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.故选:B.【点睛】本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据计算程序图计算即可.【详解】解:∵当x=648=,2是有理数,=2∴当x=2是无理数,∴y故选:A.【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键.7.C【分析】直接根据平行线的性质即可得出结论.【详解】解:∵AB∥CD,∠B=75°,∴∠C=180°-∠B=180°-75°=105°.故选:C.【点睛】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.九、填空题9.13【分析】根据求解即可.【详解】解:,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.解析:13【分析】a=求解即可.【详解】1313==,故答案为:13.【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键.十、填空题10.4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点与点关于轴对称,,,则a+b 的值是:,故答案为.【点睛】本题考查了关于x 轴对称的解析:4【分析】根据关于x 轴对称的两点的横坐标相同,纵坐标互为相反数求得a 、b 的值即可求得答案.【详解】点(,)M a b 与点(3,1)M -关于x 轴对称,3a ∴=,1b =,则a+b 的值是:4,故答案为4.【点睛】本题考查了关于x 轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.十一、填空题11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣1 2 .十二、填空题12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.十三、填空题13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.十四、填空题14., 1【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a1=﹣1时,a2===,a3===解析:12,201721【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值.【详解】解:由题意可得,当a 1=﹣1时,a 2=111a -=11(1)--=12, a 3=211a -=1112-=2, a 4=﹣1,…,∵2020÷3=673…1,∴a 1+a 2+a 3+…+a 2020=(﹣1+12+2)×673+(﹣1) =32×673+(﹣1) =20192﹣22 =20172, a 1×a 2×a 3×…×a 2020 =[(﹣1)×12×2]673×(﹣1)=(﹣1)673×(﹣1)=(﹣1)×(﹣1)=1, 故答案为:12,20172,1. 【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键. 十五、填空题15.(0,4)或(0,-4).【分析】设△ABC 边AB 上的高为h ,利用三角形的面积列式求出h ,再分点C 在y 轴正半轴与负半轴两种情况解答.【详解】解:设△ABC 边AB 上的高为h ,∵A (1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.十六、填空题16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.十七、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.十八、解答题18.(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)====-11;(2)=解析:(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案.【详解】解:(1)223m mn n ++=222m mn n mn +++=()2m n mn ++=2215-=-11;(2)2()m n -=2()4m n mn +-=()22415-⨯- =464+=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.十九、解答题19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD ∴(内错角相等,两直线平行),3180CAB (两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 二十、解答题20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.二十一、解答题21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)4214;(2)1【分析】(121(2)求出a,b然后代入代数式即可.【详解】解:(1)∵16212521∴214214.(2)3114,∴113a.∵4175<,∴4b=,∴341a b+=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a二十三、解答题23.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD =∠ABM +∠CDM ,∴m =2x +2y ,∴x +y =12m ,∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 二十四、解答题24.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.二十五、解答题25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
马鸣风萧萧
2015学年春季学期期末复习试卷一
七 年 级 数 学
一、选择题:(每小题10分,共30分)
1、下列各点中,在第二象限的点是( )
A .(2,3)
B .(2,-3)
C .(-2,3)
D .(-2,-3) 2、若b a >,则下列不等式成立的是( )
A .33-<-b a
B .b a 22->-
C .44b
a <
D .1->b a
3、“4的平方根是±2”的翻译成数学表达式是( ) A .4=±2 B .-4=2 C .-4=2 D .±4=±2
4、已知2
1x y =-⎧⎨
=⎩
是方程mx +y =3的解,m 的值是( )
A .2
B .-2
C .1
D .-1
5、将一直角三角板与两边平行的纸条如图所示放置,下列结论:⑴ ∠1=∠2,⑵ ∠3=∠4, ⑶ ∠2+∠4=90°,⑷ ∠4+∠5=180°。
其中正确的个数是( )
A . 1
B . 2
C . 3
D . 4 6、不等式组⎩⎨⎧≥->+1
255
23x x 的解在数轴上表示为( )
7、下列调查:①调查一批灯泡的寿命;②调查某城市居民家庭收入情况;③调查某班学生的视力情况;④调查某种药品的药效.其中适合抽样调查的是( ) A .①②③ B .①②④ C .②③④ D .①③④
8、如图,雷达探测器测得六个目标A 、B 、C 、D 、E 、F 出现。
按照规定的目标表示方法,目标C 、
F 的位置表示为C (6,120°)、 F (5,210°);按照此方法在表示目标A 、B 、D 、E 的位置时, 其中表示不正确的是( ) A . A (5,30°) B . B (2,90°) C . D (4,240°) D . E (3,
60°) 9、如图,A 、B 的坐标为(2,0)、(0,1)若将线段AB 平移至A 1B 1,则a +b 的值为( )
A .2
B .3
C .4
D .5
10、若方程组⎩⎨
⎧=+=-9.30531332b a b a 的解是⎩⎨⎧==2
.13
.8b a ,则方程组⎩⎨⎧=-++=--+9.30)1(5)2(313)1(3)2(2y x y x 的解是( )
A .⎩⎨
⎧==2
.13
.8y x B .⎩⎨⎧==2.23.10y x C .⎩⎨⎧==2.23.6y x D .⎩⎨⎧==2.03.10y x
二、填空题:(每小题3分,共18分)
11、为了知道一锅汤的味道,妈妈从锅里舀了一勺汤尝尝,这种调查方式是 12、已知5在两个连续整数a 和b 之间(a <b ),那么b a =
13、不等式组24
25
x a x b +>⎧⎨
-<⎩的解是02x <<,那么a b +的值等于
14、如图是重叠的两个直角三角形。
将其中一个直角三角形沿BC 方向平移得到△DEF 。
如果AB
=8cm ,BE =3cm ,DH =2cm ,则图中阴影部分面积为 cm 2。
15、如图,正方形网格ABCD 是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐 标系中,使BC ∥x 轴,若点E 的坐标为(-4,2),点F 的横坐标为5,则点H 的坐标为 16、如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,
则图c 中的∠CFE 的度数是
三、解答题:(共9小题,72分)
17、(本题6分)计算:22127132015--++-)(
18、(本题6分)用适当的方法解方程组⎩⎨⎧-=+-=1
232
y x y x
19、(本题6分)解不等式组⎩
⎨
⎧+>>-120
26x x x ,并把解集在数轴上表示出来。
20、(本题6分)已知CD ∥AB ,OE 平分∠AOD ,OF ⊥OE ,∠D=50°,求∠BOF 的度数。
1 0 2
A .
1 0
2
B .
1 0
2
C .
1 0
2 D .
A D
C
B
E
C
B
F
D
C
D
E
F
G
A B
E
F
G
A
图a
图b 图c
1
2
3
4
5
第5题图
B A E
C
D F
H
第14题图
y
O
B (0,1)
(20)
A ,1(3)
A b ,1(2)
B a ,第9题图
x
马鸣风萧萧
21、(本题8分)已知△A′B′C′是由△ABC 经过平移得到的,它们各顶点在平面直角坐标系中的坐标
如下表所示:
△ABC A (a ,0) B (3,0) C (5,5) △A′B′C′
A′(4,2)
B′(7,b )
C′(c ,7)
⑴ 观察表中各对应点坐标的变化,并填空:=a =b =c ⑵ 在平面直角坐标系中画出△ABC 及平移后的△A′B′C′; ⑶ 求出△A′B′C′的面积。
22、(本题8分)按要求画图(保不写作法,但保留作图痕迹):
⑴ 作出从点P 点到水渠的最短距离,并说明道理。
(5分) ⑵ 过点C 作出AD 的垂线,过D 作出AC 的平行线。
(3分)
23、(本题10分)某地区为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出 基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费。
为更好地决策,自来 水公司随机抽取部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点 但不包括左端点),请你根据统计图解答下列问题: ⑴ 此次调查抽取了多少用户的用水量数据?
⑵ 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数; ⑶ 如果自来水公司将基本用水量定为每户25吨,那么该地区40万用户中约有多少用户的用 水全部享受基本价格?
24、(本题10分)“水是生命之源。
”为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计
费。
如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:
自来水销售价格 污水处理价格 每户每月用水量 单价:元/吨 单价:元/吨
17吨以下
a 0.80 超过17吨但不超过30吨的部分
b 0.80 超过30吨的部分
6.00 0.80 (说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用) 已知小王家2015年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元。
⑴ 求a 、b 的值;
⑵ 随着夏天的到来,用水量将增加。
为了节省开支,小王计划把6月份的水费控制在不超过 家庭月收入的2%。
如果小王家的月收入为9200元,求小王家6月份最多能用水多少吨? 25、(本题12分)有一天李小虎同学用《几何画板》画图,他先画了两条平行线AB 、CD ,然后在 平行线间画了一点E ,连接BE 、DE 后(如图①),他用鼠标左键点住点E ,拖动后,分别得到 如图②、③、④等图形。
这时他突然一想:∠B 、∠D 与∠BED 之间的度数有没有某种联系呢? 接着小虎同学通过利用《几何画板》的“度量角度”和“计算”的功能,找到了这三个角之间 的关系。
⑴ 你能探讨出图①至图④各图中∠B 、∠D 与∠BED 之间的关系。
如图①中∠BED = 如图②中∠BED = 如图③中∠BED = 如图④中∠BED =
⑵ 选图③ 过点E 作EF ∥AB ∵
AB ∥CD
∴ EF ∥CD ( ) ∴ ∠D =∠DEF ∠B =∠BEF 又∵ ∠BED =
∴ ∠BED = ⑶ 模仿⑵的解答过程,证明你在图④中发现的关系。
第20题图 P
水渠.
道理:
(1)小题图
A
B
C
D (2)小题图
E
D
C
A
B
图 ②
E D C
B
A
图 ①
E
D
C
B
A
图 ③
E D
C B A
图 ③ F A
B C
D
E
图 ④
初中数学试卷
马鸣风萧萧
马鸣风萧萧。