如何运用宏程序加工梯形螺纹
- 格式:docx
- 大小:10.92 KB
- 文档页数:4
如何用宏程序编程车削梯形螺纹的方法梯形螺纹较之三角螺纹,其螺距和牙型都大,而且精度高,牙型两侧面表面粗糙度值较小,致使梯形螺纹车削时,吃刀深、走刀快、切削余量大、切削抗力大,这就导致了梯形螺纹的车削加工难度较大。
参考程序①编程分析用宏程序编程时变量的设置是核心内容,一是要变量尽可能少,避免影响数控系统计算速度,二是便于构成循环。
经过分析本例中要4个变量,#1为刀头到牙槽底的距离,初始值为5.5mm,#2为背吃刀量(半径值),#3为(牙槽底宽—刀头宽度)/2,#4为每次切削螺纹终点X坐标。
本例中编程关键技术是要利用宏程序实现分层切削和左右移刀切削。
利用G92螺纹加工循环指令功能,左右移刀切削只需将切削的起点相应移动0.268*[#1-#2]+#3(右移刀切削)或者-0.268*[#1-#2]-#3(左移刀切削)就可以实现。
分层切削的实现通过#1和#2变量实现,每层加工三刀后,让#1=#1-#2实现进刀,而在每层中螺纹的X坐标不变,始终为#4=69.0+2*[#1-#2]。
②参考程序参考程序注释O0001;程序号N10 T0101;换01号刀具,调用01号偏置值N20 M08;打开切削液N30 M03 S180;主轴正转,转速为180r/minN40 G00 X90.0 Z10.0;刀具快速移动到点(90,10)N50 #1=5.5;#1为刀头到牙槽底的距离,初始值为5.5mmN60 #2=0.2;#2为背吃刀量(半径值)N70 #3=/2;#3为(牙槽底宽—刀头宽度)/2N80 WHILE[#1GE0.2]DO1;当#1≥0.2,执行循环1,底部留0.2mm的精车余量N90 #4=69.0+2*[#1-#2];#4为每次切削螺纹终点X坐标N100 G00 Z5.0;移动到直进刀切削的循环起点N110 G92 X#4 Z-286.0 F10.0;直进刀车削螺纹N120 G00 Z[5+0.268*[#1-#2]+#3];移动到右移刀切削的循环起点N130 G92 X#4 Z-286.0 F10.0;右移刀车削螺纹N140 G00 Z[5-0.268*[#1-#2]-#3];移动到左移刀切削的循环起点N150 G92 X#4 Z-286.0 F10.0;左移刀车削螺纹N160 #1= #1- #2;构成循环N170 END1;当#1<0.2,跳出循环1N180 G00 X200.0 Z150.0;快速退刀N190 M09;关闭切削液N200 M30;程序结束说明:①参考程序以工件右端面中心为编程原点。
梯形螺纹的宏程序加工摘要:梯形螺纹是数控车工加工的难点,宏程序是数控编程的难点,然而二者结合起来就会使数控机床加工梯形螺纹,操作者只要修改参数的数值就可以完成不同螺距与长度的梯形螺纹加工,十分的方便快捷。
关键词:数控车床FANUC系统梯形螺纹宏程序#1=A 梯形螺纹大径#2=B 梯形螺纹小径#3=B 梯形螺纹牙底槽宽#4=I 梯形螺纹车刀刀头宽度#5=J 梯形螺纹长度L#6=K 梯形螺纹螺距#7=D 升速段长#8=E 减速段长#9= 粗车转速#10= 精车转速#19=S 精加工余量(直径值)主程序:O0001;N10 G54 G40 G21;N20 T0404;调用梯形螺纹车刀N30 G65 P333;调用梯形螺纹宏程序N40 M05;主轴停止转动N50 M30;程序结束并返回程序开头宏程序;O333N10 M03 S#9;主轴正转,转速为#9N20 #30=FUP[[#1-#2-#19]/2/#18];根据背吃刀量和精加工余量计算径向粗车循环次数(下取整)N30 #31=[#1-#2-#19]/#30;计算径向粗加工每次背吃刀量(直径值)N40 #40=FUP[#3-#4-#19/2]/2/#20;计算Z向粗车循环次数;N50 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N60 #28=1;径向切削次数初始值赋值N70 WHILE[#28GT#30]DO1;N80 G00 X[#1+3];车刀快速移动到X方向起刀位置N90 Z#7;车刀快速移动到Z方向起刀点N100 X[#1-#31];车刀径向切入一个背吃刀量N120 G32 Z-[#5+#8]F#6;粗车梯形螺纹N110 #29=1;Z向切削次数初始值赋值N130 WHILE[#29GT#40]DO2;N140 G00 X[#1+3];车刀快速返回到X方向起刀位置N150 Z#7;车刀快速移动到Z方向起刀点N160 W-#41;车刀Z向负向移动一个切削量N170 X[#1-#31];车刀径向进刀#31N180 G32 Z-[#5+#8]F#6;粗车梯形螺纹N190 G00 X[#1+3];车刀快速返回到X方向起刀位置N200 Z#7;车刀快速移动到Z方向起刀点N210W#41;车刀Z向正向移动一个切削量N220X[#1-#31];车刀径向进刀#31N230G32Z-[#5+#8]F#6;粗车梯形螺纹N240G00X[#1+3];车刀快速返回到X方向起刀位置N250Z#7;车刀快速移动到Z方向起刀点N260#29=#29+1;Z向移动次数增加1N270#41=#41*#29;Z向移动量递增N280END2;N290#28=#28+1;X向切削次数增加1N300#31=#31*#28;X向切削量递增N310END1;N320 #41=[#3-#4-#19/2]/2/#40;计算Z向粗加工每次背吃刀量N330#29=1;Z向切削次数初始值赋值N340S#10;选用精加工转速N350G00X[#1+3];车刀快速返回到X方向起刀位置N360Z#7;车刀快速移动到Z方向起刀点N370X#2;车刀进给到X向精车位置N380G32Z-[#5+#8]F#6;精车螺纹牙底N390WHILE[#29GT#40]DO3;N400G00X[#1+3];车刀快速返回到X方向起刀位置N410Z#7;车刀快速移动到Z方向起刀点N420X#2;车刀进给到X向精车位置N430W-#41;车刀Z向负向移动一个切削量N440G32Z-[#5+#8]F#6;精车螺纹牙底N450G00X[#1+3];车刀快速返回到X方向起刀位置N460Z#7;车刀快速移动到Z方向起刀点N470X#2;车刀进给到X向精车位置N480W#41;车刀Z向正向移动一个切削量N490G32Z-[#5+#8]F#6;精车螺纹牙底N500#29=#29+1;Z向移动次数增加1N510#41=#41*#29;Z向移动量递增N520END3;N530G00X[#1+3];车刀快速返回到X方向起刀位置N540Z#7;车刀快速移动到Z方向起刀点N550X#2;车刀进给到X向精车位置N560W-[#3-#4]/2;车刀移动到螺纹牙右侧面起点N570G32Z-[#5+#8]F#6;精车螺纹牙牙右侧面N580G00X[#1+3];车刀快速返回到X方向起刀位置N590Z#7;车刀快速移动到Z方向起刀点N600X#2;车刀进给到X向精车位置N610W[#3-#4]/2;车刀移动到螺纹牙左侧面起点N620G32Z-[#5+#8]F#6;精车螺纹牙牙左侧面N630G0X100;N640Z100;N650M99。
宏程序车梯形螺纹编程实例:轻松掌握数控加工技巧宏程序车梯形螺纹编程是数控加工中的一项重要技术,掌握它可以在加工过程中提高效率,减少出错率。
下面我们将通过具体实例介绍它的编程方法,并分享一些应用技巧。
首先,我们来了解梯形螺纹的基本概念和特点。
梯形螺纹的截面呈梯形形状,主要特点是具有自锁功能,适用于传递直线运动和旋转运动。
梯形螺纹可分为内螺纹和外螺纹两种,以外螺纹为例,其编程一般涉及以下几个方面:1.螺距计算:梯形螺纹的螺距是指螺纹轴线上相邻螺纹的距离,其计算公式为p=πd/ t。
其中,p为螺距,d为螺纹直径,t为梯形螺纹的节距。
在编程时,需要根据实际情况计算螺距值。
2.编写宏程序:宏程序是一种重复利用的程序,可以用于同时编程多个基本运动命令,可以快速完成常用的加工任务。
对于梯形螺纹的编程,我们可以通过宏程序实现螺纹加工的自动化。
3.参数设置:在编写宏程序时,需要设置一些加工参数,包括进给速度、主轴转速、切削深度等。
这些参数的设置需要根据实际情况进行调整,以确保加工质量。
当编写好宏程序后,我们可以通过调用宏程序来实现梯形螺纹的加工。
在加工过程中,需要注意以下几点:1.加工前应该进行适当的准备工作,包括安装夹具、刀具的选择和切削液的添加等。
2.在加工过程中,应随时观察机床的运行状态,及时判断是否需要调整加工参数。
3.加工结束后,应该及时清洁机床和刀具,并对加工质量进行检查。
通过以上步骤,相信大家已经掌握了宏程序车梯形螺纹编程的基本方法和应用技巧。
在实际加工中,需要根据具体情况进行调整和优化,才能达到更好的加工效果。
希望本文对大家在数控加工方面有所帮助。
MANUFACTURING AND PROCESS | 制造与工艺浅谈在数控车床上运用宏程序加工多线梯形螺纹轴的应用曾金平广西南宁技师学院 广西南宁市 530031摘 要: 本文以广州数控GSK980TD系统数控车床上加工多线梯形螺纹轴为例,借助于宏程序中的变量、算术代码及转移代码特点,编写出切实可行的多线梯形螺纹加工程序。
经过实践操作验证,该程序结构简单,运行可靠,其通用性、灵活性强。
关键词:宏程序 多线梯形螺纹 变量 数控车床多线梯形螺纹在机械工业应用十分广泛,多用于快速机构的传动中。
随着社会的发展,多线梯形螺纹应用的场合越来越精密,而对于加工技术要求也越来越高,无论是在普通车床上还是在数控车床上加工多线梯形螺纹,都是具有较大的挑战性。
都需要经过合理的分析图纸计算螺纹的各个参数、制定加工工艺、选择适合的刀具材料及几何角度。
而在数控车床加工中,有手工编制程序和自动编程两种。
对于大部分的零件,采用自动编程都能够达到很好的效果,而且快捷、方便。
但是在少数情况下如复杂的零件,很难采用自动编程完成,比如加工多线梯形螺纹。
本文以广州数控GSK980TD系统数控车床上加工多线梯形螺纹轴为例,对多线梯形螺纹的数控车削加工方法进行解析。
1 实例分析如图6-3所示,该零件为三线梯形螺纹轴零件,材料为:45#钢,该零件梯形螺纹部分的直径为40mm,导程为21mm,螺距为7mm,中径和顶径的公差等级为7e,牙两侧的表面粗糙度值为1.6μm,要求左端外圆φ440-0.018与右端外圆φ300-0.013同轴度达φ0.03。
该零件要求的表面质量及表面粗糙度值较高。
根据对图纸进行分析,本次装夹方式可采用一夹一顶的装夹方式进行加工。
加工步骤如下:1.工件伸出三爪自定心卡盘20mm并夹紧。
2.车平端面,钻中心孔。
3.掉头装夹,工件伸出三爪自定心卡盘45mm夹紧,车端面控制总长。
4.粗车外圆φ44.2×35mm、φ35.2×25mm5.精车外圆φ440-0.018×8mm、φ350-0.062×25mm6.使用φ23麻花钻钻孔。
B类宏程序在数控车床加工梯形螺纹中的应用摘要:螺纹是车削加工中常见的加工内容。
数控车床的普及大大提高了螺纹的加工精度和生产效率,但对于大螺距的螺纹,由于螺旋槽比较深,车削螺纹时产生的切削力较大,易损坏刀具。
通过用b类宏程序控制单一固定循环指令,采用分层斜进的加工方法,精确控制刀具每次车削螺纹起刀点的位置和切削深度,减小了作用在刀具上的切削力,当切削深度到达终点后,可控制刀具只车削螺旋槽侧面,直至中径尺寸符合要求。
关键词:数控车床宏程序梯形螺纹程序参数化数控车床在制造业中的广泛应用,不仅减小了车工操作者的劳动强度,而且大大提高了零部件的加工精度和生产效率。
但是,对于大螺距或者大导程的螺纹,例如梯形螺纹的加工和蜗杆的加工,如果简单的使用螺纹加工指令,由于切削力大,容易损坏刀具和工件。
如果能精确控制刀具切深,可有效地解决这一难题。
一、工艺分析梯形螺纹由于螺旋槽较深,切削力较大,通常采用一夹一顶的装夹方式。
图1中梯形螺纹部分较短,刚性好,采用三爪卡盘夹持,伸出卡盘的长度应略大于50mm,以刀架或刀具与卡盘不发生干涉为宜,采用一把高速钢车刀分粗精车完成。
梯形螺纹的牙型高为3.5mm,螺旋槽较深,车削时刀具受力较大,易产生扎刀现象,如何降低刀具受力成为车削成功的关键。
采用g92指令直进法进刀,车刀的三个切削刃都参加切削,随着切削深度的加大,切削力也不断增大,易损坏刀具。
采用g76指令斜进法进刀,刀具每次切削时仅有二个切削刃参加切削,减小了作用在刀具上的切削力。
但对于大螺距的螺纹,由于螺旋槽深度大,刀具在到达一定深度时,切削力仍然很大,也易损坏刀具。
采用斜进法分层车削,如图2所示,刀具在同一切削深度上,切削完一层后,再切第二层,即便是螺旋槽很深,而每次作用在刀具上的切削力并不大,可有效解决车削大螺距螺纹时刀具受力过大的问题。
二、加工准备1.参数计算2.刃磨刀具刃磨螺纹刀具符合参数要求,如图3所示,刀头宽度小于牙槽底宽,一般为牙槽底宽的2/3,这里取1.5mm。
如何运用宏程序加工梯形螺纹
通用宏程序举例
下面用通用程序加工一个长度40的Tr36X6(P3)梯形螺纹。
3.1变量的使用
所有变量见表1中,首先根据图纸尺寸填写表1中的螺纹尺寸参数变量,然后结合工艺条件选取切削加工参数并填入表1中对应各栏。
表1通用程序变量表
3.2程序内容
将表1中各参数带入表2的通用程序表。
对于不同的规格的梯形螺纹只要填写程序中的#1到#14后的值,便可直接应用程序进行加工。
4结束语我们在FANUCOI系统的数控车床上,利用本通用程序进行了多头梯形螺纹的实际加工,取得了良好的效果。
本通用程序考虑全面,加工时只需快速地将变量表中各项变量的值赋入程序便可进行加工,程序适应性广、工艺编制合理、加工质量高,解决了梯形螺纹数控编程加工的诸多难题,可以直接将本程序编为子程序推广作为机床的配套程序。
内梯形螺纹(Tr40x7 )的宏程序
内梯形螺纹(Tr40x7 )的宏程序
系统:FANUC - oimait
编程思想:每一层分中、右、左三分,每一刀的Z轴方向的起刀点都不同
1、内梯形螺纹加工程序:
G54G99
M3S100
T0101
G0Z3
X33
#101=0.2;每一刀的的深度(半径)
#102=4梯形螺纹的深度(半径)
#103=1 分层切削的次数
N90 G0U[2*#101*#103]
G32Z-32F7
G0X32
Z[3+[#102-#101]*0.268+ A]; A 是槽底宽-刀尖宽的一半
X33
U[2*#101*#103]
G32Z-32F7
G0X32
Z[3-[#102-#101]*0.268-A] 梯形螺纹的牙顶宽:0.366x 螺距梯形螺纹的牙底宽:螺距
-牙顶宽-2 倍的
(螺纹深度Xtg15°)
X33
U[2*#101*#103]
G32Z-32F7
G0X32
G0Z3
X33
#102=#102-0.2
#103=#103+1
IF[#103LE20]GOTO90 ;
G0Z100
M5
M30。