高中数学 1.1.3第1课时并集与交集学案 新人教A版必修1
- 格式:doc
- 大小:351.50 KB
- 文档页数:8
1。
3 集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算)4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集"“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、Venn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.第1课时并集与交集必备知识·探新知基础知识知识点1并集自然语言一般地,由__所有属于集合A或属于集合B__的元素组成的集合,称为集合A与B的并集(union set),记作__A∪B__(读作“A并B").符号语言__A∪B={x|x∈A,或x∈B}__图形语言(3)A B(4)B A (5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集。
思考1:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或"的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∈A或x∈B”包含三种情形:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A且x∈B.知识点2交集自然语言一般地,由__所有属于集合A且属于集合B的元素__组成的集合,称为A 与B的交集(intersection set),记作__A∩B__(读作“A交B”)符号语言__A∩B={x|x∈A,且x∈B}__图形语言(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∅)(3)A B,则A∩B=A(4)B A,则A∩B=B(5)A=B,A∩B=B=A思考2:集合运算中的“且”与生活用语中的“且"相同吗?提示:集合运算中的“且"与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∈A,且x∈B"表示元素x属于集合A,同时属于集合B.知识点3并集与交集的性质(1)__A∩A=A__,A∩∅=∅.(2)__A∪A=A__,A∪∅=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B呢?提示:(1)(A∩B)⊆A,A⊆(A∪B).(2)A∩B=A⇔A∪B=B⇔A⊆B.基础自测1.(2019·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A)A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}[解析]∵B={x|x2≤1}={x|-1≤x≤1},∴A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D)A.{0,1,2} B.{2}C.{2,4}D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5〈x<3},N={x|-4〈x<5},则M∩N =(A)A.{x|-4〈x<3}B.{x|-5<x〈-4}C.{x|3〈x<5}D.{x|-5〈x〈5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=__{1,6}__。
1. 1.3集合的基本运算(并集、交集)【教学目标】1、熟练掌握交集、并集的概念及其性质。
2、能利用数轴、韦恩图来解决交集、并集问题。
3、体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。
【教学重难点】教学重点:会求两个集合的交集与并集。
教学难点:会求两个集合的交集与并集。
【教学过程】(一)复习集合的概念、子集的概念、集合相等的概念。
(二)教学过程一、情景导入1、观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?2、(1)考察集合A={1,2,3},B={2,3,4}与集合C={2,3}之间的关系.(2)考察集合A={1,2,3},B={2,3,4}与集合C={1,2,3,4}之间的关系.二、检查预习1、交集:一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的交集. 记作A ∩B (读作"A 交B "),即A ∩B={x|x ∈A ,且x ∈B }.如:{1,2,3,6}∩{1,2,5,10}={1,2}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A ∩B={c,d,e}2、并集: 一般地,对于给定的两个集合A,B 把它们所有的元素并在一起所组成的集合,叫做A,B 的并集.记作A ∪B (读作"A 并B "),即A ∪B={x|x ∈A ,或x ∈B }.如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.又如:A={a,b,c,d,e },B={c,d,e,f}.则A ∪B={a,b,c,d,e,f}三、合作交流A ∩B=B ∩A; A ∩A=A; A ∩Ф=Ф; A ∩B=A ⇔A ⊆BA ∪B=B ∪A; A ∪A=A; A ∪Ф=A; A ∩B=B ⇔A ⊆B注:是否给出证明应根据学生的基础而定.四、精讲精练例1、已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .x =3,y =-1 B.(3,-1)C.{3,-1}D.{(3,-1)}解析: 由已知得M ∩N ={(x ,y )|x +y =2,且x -y =4}={(3,-1)}.也可采用筛选法.首先,易知A 、B 不正确,因为它们都不是集合符号.又集合M ,N 的元素都是数组(x ,y ),所以C 也不正确.A B点评: 求两集合的交集即求同时满足两集合中元素性质的元素组成的集合.本题中就是求方程组⎩⎨⎧=-=+42y x y x 的解组成的集合.另外要弄清集合中元素的一般形式. 变式训练1:已知集合M ={x|x +y =2},N ={y|y= x 2},那么M ∩N 为例2.设A={x|-1<x<2},B={x|1<x<3},求A ∪B.解析:可以通过数轴来直观表示并集。
第1课时并集与交集1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.2.能使用Venn图表示集合交集与并集运算,体会直观图示对理解抽象概念的作用.1.并集定义的三种语言描述:文字语言一般地,由所有的元素组成的集合,称为集合A与B 的并集,记作,读作“A并B”符号语言图形语言2.交集定义的三种语言描述:文字语言一般地,由的所有元素组成的集合,称为集合A与B的交集,记作,读作“A交B”符号语言图形语言3.(1)A∪A= ;(2)A∪=∪A= ;(3)A∩A= ;(4)A∩=∩A= ;(5)A∩B=A⇔ ;(6)A∪B=A⇔ .1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}2.已知集合A={x|x>1},B={x|-1<x<2},则A∩B=()A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}3.若A,B,C为三个集合,A∪B=B∩C,则一定有()A.A⊆CB.C⊆AC.A≠CD.A=4.设集合A={-1,1,3},B={a+2,+4},A∩B={3},则实数a= .一、并集提出问题:1.情景引入二中,集合C表示我班45名同学中爱好数学或爱好物理的同学的全体,它与集合A,B有什么关系?结论:提出问题:2.对于两个集合A,B,二者之间一定具有包含关系吗?试举例说明.结论:提出问题:3.考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.结论:例1 (2013·广东高考)设集合M={x|+2x=0,x∈R},N={x|-2x=0,x∈R},则M∪N=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}例2 设集合A={x|-1<x<2},集合B={x|1<x<3},求A∪B.反馈练习1 已知集合A={1,3,m},B={3,4},A∪B={1,2,3,4},则m= .二、交集提出问题:1.考察下面的问题,思考集合A,B与集合C之间有什么关系?(1)A={2,4,6,8,10},B={3,5,8,12},C={8};(2)A={x|x≤3},B={x|x>0},C={x|0<x≤3};(3)A={x|x是新华中学2013年9月在校的女学生},B={x|x是新华中学2013年9月在校的高一年级学生},C={x|x是新华中学2013年9月在校的高一年级女学生}.结论:提出问题:2.类比集合的并集,你能给出集合的交集的定义吗?请分别用三种不同的语言形式来表达. 结论:例3 新华中学开运动会,设A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.例4 设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示,的位置关系.反馈练习2 设集合A={x|2x+1<3},B={x|-3<x<2},则A∩B等于()A.{x|-3<x<1}B.{x|1<x<2}C.{x|x>-3}D.{x|x<1}三、并集与交集的性质提出问题:1.依据并集和交集的定义,分析一下A∪A,A∪,A∩A,A∩的结果是什么?结论:提出问题:2.对于给定的任意两个集合A,B,它们的并集运算和交集运算满足交换律吗?结论:提出问题:3.对于给定的任意两个集合A,B,集合A、集合B、集合A∩B分别与集合A∪B有什么包含关系?结论:提出问题:4.对任意的两个集合A,B,下列关系式成立吗?说明理由.(1)A∩B=A⇔A⊆B;(2)A∪B=A⇔B⊆A.结论:四、集合中元素的个数问题提出问题:1.阅读教科书P13,回答:(1)什么叫有限集?什么叫无限集?(2)如果用card(A)来表示有限集合A中元素的个数,对任意两个有限集合A,B,card(A∪B)与card(A),card(B)有什么关系?结论:提出问题:2.你能用Venn图来解释上述公式吗?结论:反馈练习3 高一(2)班共有50名同学,参加物理竞赛的同学有36名,参加数学竞赛的同学有39名,且已知有5名同学两科竞赛都没有参加,问:只参加数学竞赛而不参加物理竞赛的同学有多少名?1.(2012·四川高考)设集合A={a,b},B={b,c,d},则A∪B=()A.{b}B.{b,c,d}C.{a,c,d}D.{a,b,c,d}2.(2013·新课标全国Ⅱ高考)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}3.某学校所有男生组成集合A,一年级的所有学生组成集合B,一年级的所有男生组成集合C,一年级的所有女生组成集合D.求A∩B,C∪D.4.设A={x|-4<x<0},B={x|-1<x<2},求A∪B,A∩B.。
1.3 第1课时并集与交集教学目标1.理解并集、交集的概念.2.会用符号、Venn图和数轴表示并集、交集.3.会求简单集合的并集和交集.教学知识梳理知识点一并集(1)定义:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”).(2)并集的符号语言表示为A∪B={x|x∈A,或x∈B}.(3)图形语言:、.阴影部分为A∪B.(4)性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆A∪B.知识点二交集(1)定义:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”).(2)交集的符号语言表示为A∩B={x|x∈A,且x∈B}.(3)图形语言:,阴影部分为A∩B.(4)性质:A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B. 题型探究题型一并集及其运算例1(1)设集合A={1,2,3},B={2,3,4},则A∪B等于()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}『答案』A『解析』∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}.故选A.(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.解如图:由图知A∪B={x|-1<x<3}.反思感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练1 (1)A ={-2,0,2},B ={x |x 2-x -2=0},求A ∪B .解 B ={-1,2},∴A ∪B ={-2,-1,0,2}.(2)A ={x |-1<x <2},B ={x |x ≤1或x >3},求A ∪B .解 如图:由图知A ∪B ={x |x <2或x >3}.题型二 交集及其运算例2 (1)已知集合A ={1,2,3},B ={x |(x +1)(x -2)=0},则A ∩B 等于( )A.{1}B.{2}C.{-1,2}D.{1,2,3}『答案』B『解析』B ={}-1,2,∴A ∩B ={}2.(2)若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B 等于( )A.{x |-3<x <2}B.{x |-5<x <2}C.{x |-3<x <3}D.{x |-5<x <3}『答案』A『解析』在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得A ∩B 为图中阴影部分,即A ∩B ={x |-3<x <2},故选A.(3)已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么M ∩N 为( )A.x =3,y =-1B.(3,-1)C.{3,-1}D.{(3,-1)}『答案』D『解析』解方程组⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.∴M ∩N ={(3,-1)}. 反思感悟 求集合A ∩B 的步骤(1)首先要搞清集合A ,B 的代表元素是什么;(2)把所求交集的集合用集合符号表示出来,写成“A ∩B ”的形式;(3)把化简后的集合A ,B 的所有公共元素都写出来即可.跟踪训练2 (1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________.(2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3)集合A ={(x ,y )|y =x +2},B ={(x ,y )|y =x +3},则A ∩B =________.『答案』(1){2,3,4} (2){x |x ≥5或x =2} (3)∅『解析』(1)因为A ={x |x ∈N ,x ≤4}={0,1,2,3,4},B ={x |x ∈N ,x >1},所以A ∩B ={2,3,4}.(2)易知A ∩B ={x |x ≥5或x =2}.题型三 利用集合并集、交集性质求参数例3 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1或x >5},若A ∪B =B ,求a 的取值范围. 解 A ∪B =B ⇔A ⊆B .当2a >a +3,即a >3时,A =∅,满足A ⊆B .当2a =a +3,即a =3时,A ={6},满足A ⊆B .当2a <a +3,即a <3时,要使A ⊆B ,需⎩⎪⎨⎪⎧ a <3,a +3<-1或⎩⎪⎨⎪⎧a <3,2a >5, 解得a <-4或52<a <3. 综上,a 的取值范围是{a |a >3}∪{a |a =3}∪⎩⎨⎧⎭⎬⎫a ⎪⎪ a <-4或52<a <3 =⎩⎨⎧⎭⎬⎫a ⎪⎪a <-4或a >52. 反思感悟 (1)在利用交集、并集的性质解题时,常常会遇到A ∩B =A ,A ∪B =B 这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等.(2)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时要考虑B =∅的情况,切不可漏掉.(3)在这里理解运算对象,掌握运算法则,探究运算思路,求得运算结果,充分体现了数学运算的数学核心素养.课堂小结1.在解决有关集合运算的题目时,关键是准确理解题目中符号语言的含义,善于将其转化为文字语言.2.集合的运算可以用Venn 图帮助思考,实数集合的交集、并集运算可借助数轴求解,体现了数形结合思想的应用.3.对于给出集合是否为空集,集合中的元素个数是否确定,都是常见的讨论点,解题时要注意分类讨论思想的应用.达标检测1.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N 等于( )A.{0}B.{0,2}C.{-2,0}D.{-2,0,2}『答案』D『解析』M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N ={-2,0,2},故选D.2.已知集合A={0,1,2,3,4,6,7},集合B={1,2,4,8,0},则A∩B等于()A.{1,2,4,0}B.{2,4,8}C.{1,2,8}D.{1,2,0}『答案』A3.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B等于()A.{0}B.{0,1}C.{0,2}D.{0,1,2}『答案』C4.若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则A∩B=________.『答案』{x|-2≤x<-1}5.已知集合A={-1}且A∪B={-1,3},则所有满足条件的集合B=________.『答案』{3}或{-1,3}『解析』因为集合A={-1},A∪B={-1,3},所以B至少含有元素3,集合B的所有可能情况为{3}或{-1,3}.。
第1课时并集与交集(教师独具内容) 课程标准:1.理解两个集合并集与交集的含义,能求两个集合的并集与交集.2.能使用Venn图直观地表达两个集合的并集与交集,体会图形对理解抽象概念的作用.教学重点:1.并集与交集的含义(自然语言、符号语言、图形语言).2.求两个集合的并集与交集.教学难点:1.并集中“或”、交集中“且”的正确理解.2.准确地找出并集、交集中的元素,并能恰当地加以表示.【知识导学】知识点一并集自然语言符号语言Venn图表示一般地,由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A,或x∈B}A∪B=□01B∪□02A,A⊆A∪B,A∪A=□03A,A∪∅=□04A,A∪B=B⇔□05A⊆□06B.知识点二交集自然语言符号语言Venn图表示一般地,由所有属于集合A且属于集合B的元素组成的集合A∩B={x|x∈A,且x∈B}A∩B=□01B∩□02A,A∩B⊆A,A∩A=□03A,A∩∅=□04∅,A∩B=A⇔□05A⊆□06B.【新知拓展】集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.1.判一判(正确的打“√”,错误的打“×”)(1)若A∩B=∅,则A,B至少有一个是∅.( )(2)若A∪B=∅,则A,B都是∅.( )(3)对于任意集合A,B,下列式子总成立:A∩B⊆A⊆A∪B.( )(4)对于任意集合A,B,下列式子总成立:A∪B=B⇔A⊆B⇔A∩B=A.( )(5)对于两个非空的有限集合A,B,A∪B中的元素一定多于A中的元素.( )答案(1)×(2)√(3)√(4)√(5)×2.做一做(1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2(2)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.{x|-1<x<3} B.{x|-1<x<0}C.{x|0<x<2} D.{x|2<x<3}(3)已知集合A={1,2,x2},B={2,x},若A∪B=A,则x=________.答案(1)D (2)A (3)0题型一求两个集合的交集与并集例1 已知集合A={x|-1<x≤2},B={x|-2≤x<1},求A∩B,A∪B.[解] 把集合A与B在数轴上表示出来,如图所示.由上图可得,A∩B={x|-1<x<1},A∪B={x|-2≤x≤2}.金版点睛集合A与B的“交”“并”运算,实质上就是对集合A与B中元素的“求同”“合并”:(1)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.(2)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A 或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A ,B 两者之一的元素组成的集合.[跟踪训练1] 已知集合A ={y |y =x 2-1},B ={x |-2≤x <0},求A ∩B ,A ∪B . 解 A ∩B ={x |-1≤x <0},A ∪B ={x |x ≥-2}.题型二 简单的含参问题例2 已知集合A ={0,1},B ={x |(x -1)(x -a )=0}.求A ∩B ,A ∪B .[解] 集合B 是方程(x -1)(x -a )=0的解集,它可能只有一个元素1(a =1),也可能有两个元素1,a (a ≠1).(1)当a =1时,A ∩B ={1},A ∪B ={0,1}; (2)当a =0时,A ∩B ={0,1},A ∪B ={0,1}; (3)当a ≠0且a ≠1时,A ∩B ={1},A ∪B ={0,1,a }. 金版点睛由于参数a 的变化,集合B 中的元素也在变化,即集合B 是变化的集合,因此需要分类讨论;特别注意,不能把集合B 写成{1,a }(因为当a =1时,不满足元素的互异性);对于两集合的“交”“并”运算,应当首先弄清两集合中的元素是什么,之后再根据集合“交”“并”运算的概念求解.[跟踪训练2] 已知集合A ={x |2a -2<x <a },B ={x |x ≤1或x ≥2},且A ∩B =A ,求a 的取值范围.解 ∵A ∩B =A ,∴A ⊆B , ∴分A =∅和A ≠∅两种情况讨论. ①若A =∅,此时有2a -2≥a ,∴a ≥2. ②若A ≠∅,则有⎩⎪⎨⎪⎧2a -2<a ,a ≤1或⎩⎪⎨⎪⎧2a -2<a ,2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2.题型三 类似于“交”“并”运算的一些新定义型问题例3 设M ,P 是两个非空集合,规定M -P ={x |x ∈M ,且x ∉P },根据这一规定,M -(M-P)等于( )A.M B.PC.M∪P D.M∩P[解析] 当M∩P≠∅时,由图可知M-P为图中的阴影部分,则M-(M-P)显然是M∩P;当M∩P=∅时,M-P=M,此时M-(M-P)=M-M={x|x∈M,且x∉M}=∅=M∩P,故选D.[答案] D金版点睛题目给出了两个集合的一种运算“M-P”,其运算法则是:M-P是由所有属于M且不属于P的元素组成的集合,弄清法则便可以进行运算,特别是借助Venn图,使问题简捷明了.[跟踪训练3]设A,B是两个非空集合,规定A*B={x|x∈A∪B,且x∉A∩B}.若A={0,1,2,4},B={1,2,3},求A*B.解∵A∪B={0,1,2,3,4},A∩B={1,2},∴A*B={0,3,4}.1.已知集合A={x|x是不大于8的正奇数},B={x|x是9的正因数},则A∩B=________,A∪B=________.答案{1,3} {1,3,5,7,9}解析由题意,知A={1,3,5,7},B={1,3,9},所以A∩B={1,3},A∪B={1,3,5,7,9}.2.已知集合A={x|x是菱形},B={x|x是矩形},则A∩B=________.答案{x|x是正方形}解析菱形的四条边相等,矩形的四个角均为90°,四条边相等并且四个角均为90°的四边形为正方形,所以A∩B={x|x既是菱形,又是矩形}={x|x是正方形}.3.已知集合A ={(x ,y )|x +y =4},B ={(x ,y )|x -y =2},则A ∩B =________. 答案 {(3,1)}解析 由题意,知A ∩B ={(x ,y )|x +y =4且x -y =2}={|(x ,y )⎩⎪⎨⎪⎧x +y =4,x -y =2,解⎩⎪⎨⎪⎧x +y =4,x -y =2,得⎩⎪⎨⎪⎧x =3,y =1,故A ∩B ={(3,1)}.4.已知A ={x |-4<x ≤2},B ={x |-2≤x ≤3},则A ∩B =________,A ∪B =________. 答案 {x |-2≤x ≤2} {x |-4<x ≤3}解析 把集合A 与B 在数轴上表示出来,如图所示.由上图可知,A ∩B ={x |-2≤x ≤2},A ∪B ={x |-4<x ≤3}.5.已知A ={x |x >a },B ={x |-1≤x ≤1},若A ∪B =A ,则a 的取值范围是________. 答案 a <-1解析 A ∪B =A ⇔B ⊆A ,则a <-1,故a 的取值范围是a <-1.。
云南省德宏州芒市第一中学高中数学 1.1.3 第1课时并集、交集教学设计新人教版必修1一、教学目标:1.记住两个集合的并集与交集的含义,会求两个简单集合的并集与交集;2.会用Venn图表达两个集合的交集与并集;3.能用两个集合并集与交集的性质解答简单的综合问题.二、.教学重点::两个集合的并集与交集的含义,求两个集合的并集与交集,两个集合并集与交集的Venn图表示.教学难点:对两个集合的并集与交集含义的理解以及并集与交集性质的应用.二、预习导学(一)知识梳理1.并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B,读作“A并B”,即A∪B={x|x∈A,或x∈B}.Venn图表示如图所示.2.交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称为集合A与B的交集,记作A∩B,读作“A交B”,即A∩B={x|x∈A,且x∈B}.Venn图表示如图所示.三、问题引领,知识探究1.“A∪B”中元素的个数是否为A,B中元素个数的和?提示:不一定是.根据集合中元素的互异性,公共元素只能出现一次.当A,B有公共元素时,A∪B中元素个数不是A,B中元素个数的和.2.在求与不等式解集有关的集合的“交”与“并”时,形象又直观的做法是什么?提示:利用数轴.例1已知集合A={x|-2≤x≤3},B={x|x<-1,或x>a,a≥4},求A∩B,A∪B.思路分析:可先分别把集合A,B标在数轴上,然后借助于数轴直观地写出A∩B和A∪B.解:∵A={x|-2≤x≤3},B={x|x<-1,或x>a,a≥4},如图所示,故A∩B={x|-2≤x<-1},A∪B={x|x≤3,或x>a,a≥4}.练习1.已知集合M={x|-3<x≤5},N={x|-5<x<5},则M∪N=( )A.{x|-5<x<5}B.{x|-3<x<5}C.{x|-5<x≤5}D.{x|-3<x≤5}答案:C解析:将集合M,N在数轴上表示出来,如图所示,由图得M∪N={x|-5<x≤5}例2已知集合M={2,3,a 2+4a+2},N={0,7,a 2+4a-2,2-a },且M ∩N={3,7},求实数a 的值. 思路分析:根据交集中的元素必在两集合中,由此列出方程求a 的值.求出a 的值后,再代入检验集合元素的互异性.解:∵M ∩N={3,7},∴7∈M.又M={2,3,a 2+4a+2},异性矛盾,舍去;∴M ∩N={3,7},符合题意.∴a=1.练习2.已知集合A={x|x ≤1},B={x|x ≥a },且A ∪B=R ,则实数a 的取值范围是 .答案:a ≤1解析:画出数轴(略),根据条件标出集合A ,B.由图知a ≤1.例3设集合A={-2},B={x ∈R |ax 2+x+1=0,a ∈R }.若A ∩B=B ,求a 的取值范围.思路分析:由条件A ∩B=B 知B ⊆A ,然后对B 分是否为⌀讨论,求a 的取值范围. 解:∵A ∩B=B ,∴B ⊆A ,∵A={-2}≠⌀,∴B=⌀或B ≠⌀.(1)当B=⌀时,方程ax 2+x+1=0无实数解,即∴a>41. (2)当B ≠⌀时,①当a=0时,方程变为x+1=0,即x=-1.∴B={-1},此时A ∩B=⌀,∴a ≠0.②当a ≠0时,依题意知方程ax 2+x+1=0有相等实根,即Δ=0,∴1-4a=0,∴a=,此时方程变为x 2+x+1=0,其解为x=-2,满足条件.综上可得a ≥41. 练习3已知集合A={x|-3≤x ≤7},B={x|2m-1≤x ≤2m+1},若A ∪B=A ,求实数m 的取值范围.解:∵A ∪B=A ,∴B ⊆A.又B ≠⌀,如图,∴∴-1≤m ≤3.四、目标检测A.N ⊆MB.M ∪N=MC.M ∩N=ND.M ∩N={2}2.已知集合A={x|x>1},B={x|-1<x<2},则A ∩B=( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}A.-4B.4C.-16D.164.若集合A ,B ,C 满足A ∩B=A ,B ∪C=C ,则A 与C 之间的关系是 . 答案: 1.D 2.D 3.B 4,.A ⊆C五、分层配餐A 组 课本 p11 练习3,4B 组 全优设计 当堂检测 5。
1.1.3集合的基本运算教案篇一:第一课时1.1.3集合的基本运算教案20XX-20XX学年上学期高一数学备课组教案主备课教师:邱惠彬备课组老师:篇二:高中数学1.1.3集合的基本运算教案新人教a版必修11.1.3集合的基本运算学习目标:(1)理解交集与并集的概念;(2)掌握两个较简单集合的交集、并集的求法;(3)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;(4)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯。
教学重点:交集和并集的概念教学难点:交集和并集的概念、符号之间的区别与联系合作探究展示:一、问题衔接我们知道两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P8思考题),引入并集概念。
二、新课教学1.并集一般地,由所有属于集合a或属于集合B的元素所组成的集合,称为集合a与B的并集(Union)记作:a∪B读作:“a并B”即:a∪B={x|x∈a,或x∈B}Venn图表示:说明:B的所有元素组成的集合(重复元素只看成一个元素)。
例题(P8-9例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。
问题:在上图中我们除了研究集合a与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合a与B的交集。
2.交集一般地,由属于集合a且属于集合B的元素所组成的集合,叫做集合a与B的交集(intersection)。
记作:a∩B读作:“a交B”即:a∩B={x|∈a,且x∈B}交集的Venn 图表示1说明:两个集合求交集,结果还是一个集合,是由集合a与B的公共元素组成的集合。
例题(P9-10例6、例7)拓展:求下列各图中集合a与B的并集与交集a集3.探索研究a∩B?a,a∩B?B,a∩a=a,a∩?=?,a∩B=B∩aa?a∪B,B?a∪B,a∪a=a,a∪?=a,a∪B=B∪a三、归纳小结(略)四、作业布置书面作业:P12习题1.1,第6-8题拓展提高:题型一已知集合的交集、并集求参数问题22例1已知集合a?a,a?1,?3,B?a?3,2a?1,a?1,若a?B???3?,???2?求实数a解:∵a?B???3?,∴?3?B,而a?1??3,∴当a?3??3,a?0,a??0,1,?3?,B???3,?1,1?,这样a?B???3,1?与a?B???3?矛盾;当2a?1??3,a??1,符合a?B???3?∴a??1练习1已知集合a??4,2a?1,a,B??a?5,1?a,9?,若a?B??9?,求a的值2??答案a=-3例2.已知a?x2a?x?a?3,B?xx??1或x?5,若a?B??,求a的取值范围.解(1)若a??,由a?B??,此时2a?a?3?a?32????a??,由a?B??,(2)若?2a??11???a?3?5解得??a?22?2a?a?3?综上所述,a的取值范围是?a????1?a?2或a?3?.2?练习2上题中若a?B?R,求a的取值范围。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题第1课时并集、交集及其应用学习目标:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)2.能使用Venn图表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)[自主预习·探新知]1.并集思考:(1)“x∈A或x∈B”包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?[提示](1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x B;x∈B,但x A;x∈A,且x∈B.用Venn图表示如图所示.(2)不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数和.2.交集3.并集与交集的运算性质[基础自测]1.思考辨析(1)两个集合的并集中元素的个数一定多于这两个集合中元素个数之和.( )(2){1,2,3,4}∪{0,2,3}={1,2,3,4,0,2,3}.( )(3)A∩B是由属于A且属于B的所有元素组成的集合.( )[答案](1)×(2)×(3)√2.设集合M={-1,0,1},N={0,1,2},则M∪N=________,M∩N=________.{-1,0,1,2} {0,1}[∵M={-1,0,1},N={0,1,2},∴M∩N={0,1},M∪N={-1,0,1,2}.] 3.若集合A={x|-3<x<4},B={x|x>2},则A∪B=________.【导学号:37102049】{x|x>-3}[如图:故A∪B={x|x>-3}.][合作探究·攻重难]并集概念及应用(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=( )【导学号:37102050】A.{0} B.{0,2}C.{-2,0} D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}(1)D(2)A[M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N ={-2,0,2},故选D.(2)在数轴上表示集合M,N,如图所示,则M∪N={x|x<-5或x>-3}.]定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解[跟踪训练]1.设S ={x |x <-1或x >5},T ={x |a <x <a +8},若S ∪T =R ,则实数a 应满足( ) A .-3<a <-1 B .-3≤a ≤-1 C .a ≤-3或a >-1 D .a <-3或a >-1A [在数轴上表示集合S ,T 如图所示.因为S ∪T =R ,由数轴可得⎩⎪⎨⎪⎧a <-1a +8>5,解得-3<a <-1.故选A.]交集概念及其应用(1)设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( )【导学号:37102051】A .{x |0≤x ≤2}B .{x |1≤x ≤2}C .{x |0≤x ≤4}D .{x |1≤x ≤4} (2)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2(1)A (2)D [(1)∵A ={x |-1≤x ≤2},B ={x |0≤x ≤4}.如图,故A ∩B ={x |0≤x ≤2}. (2)∵8=3×2+2,14=3×4+2, ∴8∈A,14∈A ,∴A ∩B ={8,14},故选D.]定义法,数形结合法但要注意,利用数轴表示不等式时,含有端点[跟踪训练]2.(2018·全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( ) A .{0,2} B .{1,2}C .{0}D .{-2,-1,0,1,2}A [由题意知A ∩B ={0,2}.]3.设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )【导学号:37102052】A .-1<a ≤2B .a >2C .a ≥-1D .a >-1D [因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1.]集合交、并运算的性质及综合应用 [探究问题]1.设A 、B 是两个集合,若已知A ∩B =A ,A ∪B =B ,则集合A 与B 具有什么关系? 提示:A ∩B =A ⇔A ∪B =B ⇔A ⊆B .2.若A ∩B =A ∪B ,则集合A ,B 间存在怎样的关系? 提示:若A ∩B =A ∪B ,则集合A =B .已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.思路探究:A ∪B =A ――――→等价转化B ⊆A ――――――→分B =∅和B ≠∅建立k 的不等关系――→求交集得k 的范围 [解] (1)当B =∅,即k +1>2k -1时,k <2,满足A ∪B =A . (2)当B ≠∅时,要使A ∪B =A , 只需⎩⎪⎨⎪⎧-3<k +14≥2k -1k +1≤2k -1,解得2≤k ≤52.综合(1)(2)可知k ≤52.[当堂达标·固双基]1.已知集合M={-1,0,1},P={0,1,2,3},则图112中阴影部分所表示的集合是( )图112A.{0,1} B.{0}C.{-1,2,3} D.{-1,0,1,2,3}D[由Venn图,可知阴影部分所表示的集合是M∪P.因为M={-1,0,1},P={0,1,2,3},故M∪P ={-1,0,1,2,3}.故选D.]2.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=( )【导学号:37102053】A.{1} B.{2}C.{-1,2} D.{1,2,3}B[∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.]3.已知集合A={1,3},B={1,2,m},若A∩B={1,3},则A∪B=( )A.{1,2} B.{1,3}C.{1,2,3} D.{2,3}C[∵A∩B={1,3},∴3∈B,∴m=3,∴B={1,2,3},∴A∪B={1,2,3}.]4.已知集合A={x|x≥5},集合B={x|x≤m},且A∩B={x|5≤x≤6},则实数m=________.【导学号:37102054】6[用数轴表示集合A、B如图所示.由A∩B={x|5≤x≤6},得m=6.]5.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3},(1)求a,b的值及A,B;(2)求(A∪B)∩C.[解](1)∵A∩B={2},∴4+2a+12=0,即a=-8,4+6+2b=0,即b=-5,∴A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)∵A∪B={-5,2,6},C={2,-3},∴(A∪B)∩C={2}.。
1.3集合的基本运算第1课时并集与交集问题导学预习教材P10-P12,并思考以下问题:1.两个集合的并集与交集的含义是什么?2.如何用Venn图表示集合的并集和交集?3.并集和交集有哪些性质?1.并集2.交集■名师点拨(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B 可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成的,而非部分元素组成.3.并集与交集的运算性质判断正误(正确的打“√”,错误的打“×”)(1)A∪B的元素个数等于集合A中元素的个数与集合B中元素个数的和.()(2)并集定义中的“或”能改为“和”.()(3)A∩B是由属于A且属于B的所有元素组成的集合.()(4)交集的元素个数一定比任何一个集合的元素个数都少.()(5)若A∩B=A∩C,则必有B=C.()答案:(1)×(2)×(3)√(4)×(5)×已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1}B.{-1,0,1,2}C.{-1,0,2} D.{0,1}解析:选B.M∪N表示属于M或属于N的元素组成的集合,故M∪N={-1,0,1,2}.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7} D.{1,7}解析:选B.因为A={1,3,5,7},B={x|2≤x≤5},所以A∩B={3,5}.已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=________.解析:在数轴上表示出集合,如图所示,由图知M∩N={x|-1<x<1}.答案:{x|-1<x<1}集合并集的运算(1)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4} D.{1,3,4}(2)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()A.{x|-1<x<2} B.{x|0<x<1}C.{x|-1<x<0} D.{x|1<x<2}(3)点集A={(x,y)|x<0},B={(x,y)|y<0},则A∪B中的元素不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】(1)由题意A∪B={1,2,3,4}.(2)因为P={x|-1<x<1},Q={x|0<x<2},画数轴如图,所以P∪Q={x|-1<x<2}.(3)由题意得,A∪B中的元素是由横坐标小于0或纵坐标小于0的点构成的集合,所以A∪B中的元素不可能在第一象限.【答案】(1)A(2)A(3)A1.(2019·福州检测)已知集合M={0,1,3},N={x|x=3a,a∈M},则M∪N=() A.{0} B.{0,3}C.{1,3,9} D.{0,1,3,9}解析:选D.因为M={0,1,3},N={x|x=3a,a∈M}={0,3,9},所以M∪N={0,1,3,9}.2.若集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=________.解析:将-3<x≤5,x<-5或x>5在数轴上表示出来.所以M∪N={x|x<-5或x>-3}.答案:{x|x<-5或x>-3}集合交集的运算(1)设集合M={m∈Z|-3<m<2},N ={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}(2)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}【解析】(1)易知M={-2,-1,0,1},N={-1,0,1,2,3},据交集定义可知M∩N={-1,0,1},故选B.(2)将集合A、B画在数轴上,如图.由图可知A∩B={x|2<x<3},故选C.【答案】(1)B(2)C求两个集合的交集的方法(1)对于元素个数有限的集合,逐个挑出两个集合的公共元素即可.(2)对于元素个数无限的集合,一般借助数轴求交集,两个集合的交集等于两个集合在数轴上的相应图形所覆盖的公共范围,要注意端点值的取舍.1.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|-1<x<1} B.{x|-2<x<1}C.{x|-2<x<2} D.{x|0<x<1}解析:选D.如图,因为A={x|-2<x<1},B={x|0<x<2},所以A ∩B ={x |0<x <1}.2.已知A ={(x ,y )|x +y =3},B ={(x ,y )|x -y =1},则A ∩B =( ) A .{2,1} B .{x =2,y =1} C .{(2,1)} D .(2,1)解析:选C.A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y =3,x -y =1={(2,1)}.交集、并集性质的应用已知集合A ={x |2<x <4},B ={x |a <x <3a (a >0)}.(1)若A ∪B =B ,求a 的取值范围; (2)若A ∩B =∅,求a 的取值范围.【解】 (1)因为A ∪B =B ,所以A ⊆B ,观察数轴可知,⎩⎪⎨⎪⎧2≥a ,4≤3a ,所以43≤a ≤2.(2)A ∩B =∅有两类情况:B 在A 的左边和B 在A 的右边,如图. 观察数轴可知,a ≥4或3a ≤2,又a >0,所以0<a ≤23或a ≥4.(变条件)本例条件下,若A ∩B ={x |3<x <4},求a 的值. 解:画出数轴如图,观察图形可知⎩⎪⎨⎪⎧a =3,3a ≥4,即a =3.利用集合交集、并集的性质解题的方法(1)在利用集合的交集、并集性质解题时,常常会遇到A ∩B =A ,A ∪B =B 等这类问题,解答时常借助于交、并集的定义及上节学习的集合间的关系去分析,如A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B 等,解答时应灵活处理.(2)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时要考虑B=∅的情况,切不可漏掉.1.已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},则实数a的值为________.解析:因为M∩N={3},所以a2-3a-1=3,解得a=-1或a=4.又N={-1,a,3},所以a≠-1,所以a=4.答案:42.已知A={x|a<x≤a+8},B={x|x<-1或x>5}.若A∪B=R,求a的取值范围.解:由a<a+8,又B={x|x<-1或x>5},在数轴上标出集合A,B,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧a +8≥5,a <-1,解得-3≤a <-1.综上,可知a 的取值范围为{a |-3≤a <-1}.1.设集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C 等于( ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}解析:选D.因为A ={1,2},B ={1,2,3}, 所以A ∩B ={1,2}. 又C ={2,3,4},所以(A∩B)∪C={1,2}∪{2,3,4}={1,2,3,4}.2.已知集合A={x|-3≤x<4},B={x|-2≤x≤5},则A∩B=()A.{x|-3≤x≤5} B.{x|-2≤x<4}C.{x|-2≤x≤5} D.{x|-3≤x<4}解析:选 B.因为集合A={x|-3≤x<4},集合B={x|-2≤x≤5},所以A∩B={x|-2≤x<4}.3.已知集合M={0,1,2},N={x|x=2a-1,a∈N*},则M∩N=()A.{0} B.{1,2}C.{1} D.{2}解析:选C.因为N={1,3,5,…},M={0,1,2},所以M∩N={1}.4.已知集合A={x|3≤x≤9},B={x|2<x<5},C={x|x>a}.(1)求A∪B;(2)若B∩C=∅,求实数a的取值范围.解:(1)由A={x|3≤x≤9},B={x|2<x<5},得A∪B={x|2<x≤9}.(2)由B∩C=∅,B={x|2<x<5},C={x|x>a},得a≥5,故实数a的取值范围是{a|a≥5}.[A基础达标]1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N等于() A.{0}B.{0,2}C.{-2,0} D.{-2,0,2}解析:选D.集合M={0,-2},N={0,2},故M∪N={-2,0,2},选D.2.已知集合P={x|x<3},Q={x|-1≤x≤4},则P∪Q=()A.{x|-1≤x<3} B.{x|-1≤x≤4}C.{x|x≤4} D.{x|x≥-1}解析:选C.在数轴上表示两个集合,如图.易知P∪Q={x|x≤4}.3.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=() A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}解析:选B.(A∪B)∩C={1,2,4,6}∩C={1,2,4}.4.已知集合M={-1,1},则满足M∪N={-1,1,2}的集合N的个数是()A.1 B.2C.3 D.4解析:选D.依题意,得满足M∪N={-1,1,2}的集合N有{2},{-1,2},{1,2},{-1,1,2},共4个.5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2 B.a>-2C.a>-1 D.-1<a≤2解析:选C.在数轴上表示出集合A、B即可知选C.6.若集合A={x|-1<x<5},B={x|x≤-1或x≥4},则A∪B=________;A∩B=________.解析:如图所示,借助数轴可知:A∪B=R,A∩B={x|4≤x<5}.答案:R{x|4≤x<5}7.若集合A={x|x≤2},B={x|x≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={x|a≤x≤2};当a=2时,A∩B={2}.综上,a=2.答案:28.已知集合M={x|-2≤x-1≤2},N={x|x=2k-1,k∈N*},Venn图如图所示,则阴影部分所表示的集合的元素共有________个.解析:M={x|-1≤x≤3},集合N是全体正奇数组成的集合,则阴影部分所表示的集合为M∩N={1,3},即阴影部分所表示的集合共有2个元素.答案:29.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C.解:(1)因为A∩B={2},所以4+2a+12=0,4+6+2b=0,即a=-8,b=-5,所以A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)因为A∪B={-5,2,6},C={2,-3},所以(A∪B)∩C={2}.10.(2019·伊春检测)已知集合A={x|x≥3},B={x|1≤x≤7},C={x|x≥a-1}.(1)求A∩B,A∪B;(2)若C∪A=A,求实数a的取值范围.解:(1)因为A={x|x≥3},B={x|1≤x≤7},所以A∩B={x|3≤x≤7},A∪B={x|x≥1}.(2)因为C∪A=A,A={x|x≥3},C={x|x≥a-1},所以C⊆A,所以a-1≥3,即a≥4.[B能力提升]11.下列表示图形中的阴影部分正确的是()A.(A∪C)∩(B∪C) B.(A∪B)∩(A∪C)C.(A∪B)∩(B∪C) D.(A∪B)∩C解析:选A.阴影部分完全覆盖了C部分,这样就要求交集运算的两边都含有C部分.所以A正确.12.已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},且A∪B={-2,1,5},A ∩B={-2},则p+q+r=________.解析:因为A∩B={-2},所以-2∈A且-2∈B,将x=-2代入x2-px-2=0,得p=-1,所以A={1,-2},因为A∪B={-2,1,5},A∩B={-2},所以B={-2,5},所以q=-[(-2)+5]=-3,r=(-2)×5=-10,所以p+q+r=-14.答案:-1413.设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.解:由A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7}且A∩B=C,得7∈A,7∈B且-1∈B,所以在集合A中x2-x+1=7,解得x=-2或3.当x=-2时,在集合B中,x+4=2,又2∈A,故2∈A∩B=C,但2∉C,故x=-2不合题意,舍去;当x=3时,在集合B中,x+4=7,故有2y=-1,,解得y=-12经检验满足A∩B=C.综上知,所求x=3,y=-12.此时A={2,-1,7},B={-1,-4,7},故A∪B={-1,2,-4,7}.14.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1或x>16},分别根据下列条件求实数a的取值范围.(1)A∩B=∅;(2)A⊆(A∩B).解:(1)若A=∅,则A∩B=∅成立.此时2a+1>3a-5,即a<6.若A≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是{a |a ≤7}. (2)因为A ⊆(A ∩B ),所以A ∩B =A , 即A ⊆B .显然A =∅满足条件,此时a <6. 若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -53a -5<-1或⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16.由⎩⎪⎨⎪⎧2a +1≤3a -5,3a -5<-1,解得a ∈∅; 由⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16,解得a >152.综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6或a >152}.[C 拓展探究]15.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店(1)第一天售出但第二天未售出的商品有________种; (2)这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:(1)第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).(2)这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种). 由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )min =43-14=29. 答案:(1)16 (2)29。
1.1.3 集合的基本运算第1课时并集与交集[知识链接]下列说法中,不正确的有________:①集合A={1,2,3},集合B={3,4,5},由集合A和集合B的所有元素组成的新集合为{1,2,3,3,4,5};②集合A={5,6,8},集合B={5,7,8},由集合A和集合B的所有元素组成的新集合为{5,6,7,8};③集合A={1,2,3},集合B={3,4,5},由集合A和集合B的公共元素组成的集合为{3}.答案①[预习导引]1.并集和交集的概念及其表示2.要点一集合并集的简单运算例1 (1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于( )A.{3,4,5,6,7,8} B.{5,8}C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3} B.{x|-1≤x≤4}C.{x|x≤4} D.{x|x≥-1}答案(1)A (2)C解析(1)由定义知M∪N={3,4,5,6,7,8}.(2)在数轴上表示两个集合,如图.规律方法解决此类问题首先应看清集合中元素的范围,简化集合,若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果;若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.跟踪演练 1 (1)已知集合A={x|(x-1)(x+2)=0};B={x|(x+2)(x-3)=0},则集合A∪B 是( )A.{-1,2,3} B.{-1,-2,3}C.{1,-2,3} D.{1,-2,-3}(2)若集合M={x|-3<x≤5},N={x|x<-5,或x>5},则M∪N=________.答案(1)C (2){x|x<-5,或x>-3}解析(1)∵A={1,-2},B={-2,3},∴A∪B={1,-2,3}.(2)将-3<x≤5,x<-5或x>5在数轴上表示出来.则M∪N={x|x<-5,或x>-3}.要点二集合交集的简单运算例2 (1)已知集合A={0,2,4,6},B={2,4,8,16},则A∩B等于( )A.{2} B.{4}C.{0,2,4,6,8,16} D.{2,4}(2)设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∩B 等于( ) A .{x |0≤x ≤2} B.{x |1≤x ≤2} C .{x |0≤x ≤4} D.{x |1≤x ≤4} 答案 (1)D (2)A解析 (1)观察集合A ,B ,可得集合A ,B 的全部公共元素是2,4,所以A ∩B ={2,4}. (2)在数轴上表示出集合A 与B ,如下图.则由交集的定义可得A ∩B ={x |0≤x ≤2}.规律方法 求交集就是求两集合的所有公共元素组成的集合,和求并集的解决方法类似. 跟踪演练2 已知集合A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},求A ∩B ,A ∪B .解 ∵A ={x |-1<x ≤3},B ={x |x ≤0,或x ≥52},把集合A 与B 表示在数轴上,如图.∴A ∩B ={x |-1<x ≤3}∩{x |x ≤0,或x ≥52}={x |-1<x ≤0,或52≤x ≤3};A ∪B ={x |-1<x ≤3}∪{x |x ≤0或x ≥52}=R .要点三 已知集合交集、并集求参数例3 已知A ={x |2a ≤x ≤a +3},B ={x |x <-1,或x >5},若A ∩B =∅,求实数a 的取值范围.解 由A ∩B =∅,(1)若A =∅,有2a >a +3,∴a >3. (2)若A ≠∅,如下图:∴⎩⎪⎨⎪⎧2a ≥-1,a +3≤5,2a ≤a +3,解得-12≤a ≤2.综上所述,a 的取值范围是{a |-12≤a ≤2,或a >3}.规律方法 1.与不等式有关的集合的运算,利用数轴分析法直观清晰,易于理解.若出现参数应注意分类讨论,最后要归纳总结.2.建立不等式时,要特别注意端点值是否能取到,分类的标准取决于已知集合,最好是把端点值代入题目验证.跟踪演练3 设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},求a的取值范围.解如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( )A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}答案 A解析集合A有4个元素,集合B有3个元素,它们都含有元素1和2,因此,A∪B共含有5个元素.故选A.2.设A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2} B.{3} C.{-3,2} D.{-2,3}答案 A解析注意到集合A中的元素为自然数,因此易知A={1,2,3,4,5,6,7,8,9,10},而直接解集合B中的方程可知B={-3,2},因此阴影部分显然表示的是A∩B={2}.3.集合P={x∈Z|0≤x<3},M={x∈R|x2≤9},则P∩M等于( )A.{1,2} B.{0,1,2}C.{x|0≤x<3} D.{x|0≤x≤3}答案 B解析由已知得P={0,1,2},M={x|-3≤x≤3},故P∩M={0,1,2}.4.已知集合A={x|x>2,或x<0},B={x|-5<x<5},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B答案 B解析∵A={x|x>2,或x<0},B={x|-5<x<5},∴A ∩B ={x |-5<x <0,或2<x <5},A ∪B =R .故选B.5.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________. 答案 k ≤6解析 因为N ={x |2x +k ≤0}={x |x ≤-k2},且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A 、B 两者之一的元素组成的集合.(2)A ∩B 中的元素是“所有”属于集合A 且属于集合B 的元素,而不是部分,特别地,当集合A 和集合B 没有公共元素时,不能说A 与B 没有交集,而是A ∩B =∅. 2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.一、基础达标1.已知集合A ={x |x ≥0},B ={x |-1≤x ≤2},则A ∪B 等于( ) A .{x |x ≥-1} B .{x |x ≤2} C .{x |0<x ≤2} D.{x |1≤x ≤2} 答案 A解析 结合数轴得A ∪B ={x |x ≥-1}.2.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A解析 集合M ={x |-1<x <3,x ∈R },N ={-1,0,1,2,3},则M ∩N ={0,1,2},故选A.3.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N等于( ) A.{0} B.{0,2}C.{-2.0} D.{-2,0,2}答案 D解析集合M={0,-2},N={0,2},故M∪N={-2,0,2},选D.4.设集合M={x|-3<x<2},N={x|1≤x≤3},则M∩N等于( )A.{x|1≤x<2} B.{x|1≤x≤2}C.{x|2<x≤3} D.{x|2≤x≤3}答案 A解析∵M={x|-3<x<2}且N={x|1≤x≤3},∴M∩N={x|1≤x<2}.5.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( ) A.t<-3 B.t≤-3C.t>3 D.t≥3答案 A解析B={y|y≤t},结合数轴可知t<-3.6.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.答案 2解析∵A∩B={x|a≤x≤2}={2},∴a=2.7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.解(1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.二、能力提升8.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.4答案 D解析∵A∪B={0,1,2,a,a2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4.9已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},且B ≠∅,若A ∪B =A ,则( ) A .-3≤m ≤4 B.-3<m <4 C .2<m <4 D .2<m ≤4 答案 D解析 ∵A ∪B =A ,∴B ⊆A .又B ≠∅,∴⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,即2<m ≤4.10.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2}且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________. 答案 -1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A B ∪C ).∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}. ∴a =-1,b =2.11.已知A ={x |-2≤x ≤4},B ={x |x >a }. (1)若A ∩B ≠A ,求实数a 的取值范围;(2)若A ∩B ≠∅,且A ∩B ≠A ,求实数a 的取值范围.解 (1)如图可得,在数轴上实数a 在-2的右边,可得a ≥-2;(2)由于A ∩B ≠∅,且A ∩B ≠A ,所以在数轴上,实数a 在-2的右边且在4的左边,可得-2≤a <4.三、探究与创新12.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围. 解 ∵A ∪B =A ,∴B ⊆A . 若B =∅时,2a >a +3,即a >3; 若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2,综上所述,a 的取值范围是{a |-1≤a ≤2,或a >3}.13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A ∩B =∅;(2)A ⊆(A ∩B ). 解 (1)若A =∅,则A ∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是{a |a ≤7}. (2)因为A ⊆(A ∩B ),且(A ∩B )⊆A , 所以A ∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,3a -5<-1或⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16.由⎩⎪⎨⎪⎧2a +1≤3a -5,3a -5<-1解得a ∈∅;由⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16解得a >152. 综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6,或a >152}.。