液压挖掘机液压系统概论
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
挖掘机液压工作原理挖掘机是一种常见的工程机械设备,其液压系统是实现各种功能的重要组成部分。
了解挖掘机液压工作原理对于维护和维修挖掘机具有重要意义。
本文将介绍挖掘机液压工作原理的相关知识,希望能够帮助大家更好地理解挖掘机的工作原理。
1. 液压系统概述。
挖掘机的液压系统是由液压泵、执行元件、控制元件、液压油箱、管路和液压油等组成的。
液压泵负责将机械能转换为液压能,执行元件则根据控制元件的指令,将液压能转换为机械能,从而驱动挖掘机的各项工作。
控制元件则起到控制液压系统工作的作用,液压油则作为传递液压能的介质。
2. 液压传动原理。
液压传动是利用液体传递能量的一种传动形式。
在挖掘机中,液压泵将机械能转换为液压能,通过管路输送到执行元件,执行元件再将液压能转换为机械能,从而实现对挖掘机各项工作的控制。
液压传动具有传递平稳、传动效率高、传动方向灵活等优点。
3. 液压系统工作原理。
挖掘机液压系统的工作原理是通过液压泵将液压油从液压油箱抽吸到系统中,形成一定的压力和流量。
液压油经过控制元件的调节,进入执行元件,驱动挖掘机的各项工作。
当需要停止或改变工作时,控制元件会相应地调节液压系统的工作状态。
4. 液压系统的优点。
挖掘机液压系统具有结构简单、传动平稳、工作可靠、维护方便等优点。
同时,液压系统还能够实现多路并联、多点控制、远距离传动等功能,适用于各种复杂的工况。
5. 液压系统的维护。
为了确保挖掘机液压系统的正常工作,需要定期对液压油进行更换和维护,保持液压系统的清洁和密封性能。
同时,还需要对液压泵、执行元件、控制元件等进行定期检查和维护,确保各部件的正常工作。
结语。
挖掘机液压系统是实现挖掘机各项工作的重要组成部分,了解液压系统的工作原理对于挖掘机的维护和维修具有重要意义。
希望本文所介绍的挖掘机液压工作原理相关知识能够帮助大家更好地理解挖掘机的工作原理,为实际工作提供一定的参考。
【编者按】随着国民经济的快速发展,液压挖掘机在各种工程建设领域,特别是基础设施建设中所起的重要作用越来越明显,液压挖掘机作为一类快速、高效的施工机械愈来愈被广泛使用。
液压技术是挖掘机的技术基础,液压挖掘机的发展也促进了液压技术的提高。
近几年关于挖掘机市场分析的文章屡见不鲜,但系统地论述现代液压挖掘机液压系统工作原理的文献却很少,鉴于此,《建筑机械化》杂志从2003年第9期开始将连续刊登由同济大学黄宗益教授以及李兴华、叶伟老师撰写的一组“液压挖掘机液压系统”系列文章。
该系列文章将系统论述挖掘机液压系统基础知识、概况、泵阀组合、工作装置液压回路、回转和行走液压回路、挖掘机液压系统的基本分析方法等,进而从世界挖掘机液压系统的概括与总结、目前挖掘机油路型式的分析和对比、负载敏感和压力补偿概念的提出及其定义、通常的负载敏感阀系统、分流比(抗流量饱和)负载敏感阀系统、负载敏感泵控制系统、闭中性负载敏感挖掘机油路以及挖掘机的操纵与控制等方面作较全面的阐述。
希望对液压挖掘机的设计、使用和维修有所帮助,引起大家的关注,并进行共同交流和讨论,以提高我国挖掘机的设计制造水平。
液压挖掘机液压系统概述黄宗益,叶 伟,李兴华(同济大学,上海200092)[摘 要]在简要说明液压系统对挖掘机的重要性后,提出了挖掘机对液压系统的几点性能要求,具体分析液压挖掘机工作循环的4个基本动作以及行走时的复合动作过程液压作用元件互相配合的流量分配和功率分配,进而介绍挖掘机液压回路的基本类型。
[关键词]液压挖掘机;液压系统;复合动作;控制方式;流量分配;功率分配[中图分类号]TU62 [文献标识码]B [文章编号]100121366(2003)0920012205A survey of hydraulic system in hydraulic excavatorsH UANG Zhong2yi,YE Wei,LI X ing2hua1 前言①挖掘机的发展历史可追溯到19世纪三四十年代,由于当时美国进行大规模西部开发的需要,产生了以蒸气机作为动力,模仿人体大臂、小臂和手腕构造,能行走和扭腰的挖掘机。
挖掘机液压系统介绍概述挖掘机是一种常见的工程机械设备,主要用于土地平整、挖掘和运输等作业。
挖掘机的液压系统是其重要的工作部分,为其提供了动力和控制功能。
本文将介绍挖掘机液压系统的基本构成和工作原理。
液压系统构成挖掘机的液压系统主要由液压泵、液压马达、液压缸、液压阀等组成。
液压泵液压泵是挖掘机液压系统的动力源,负责将液压油从油箱抽吸并通过管路输送到液压执行元件。
液压泵分为齿轮泵、柱塞泵、叶片泵等多种类型,根据挖掘机的工作需求选择合适的液压泵。
液压马达和液压缸液压马达和液压缸是挖掘机液压系统的执行元件,液压马达通过液压油的压力驱动旋转以提供动力,液压缸则通过液压油的压力来推动挖掘机的臂、斗杆、铲斗等部件实现各种操作。
液压阀液压阀是挖掘机液压系统中的控制元件,根据操作需求控制液压油的流动方向、压力和流量。
常见的液压阀有单向阀、换向阀、溢流阀等多种类型。
液压系统工作原理挖掘机液压系统的工作原理主要包括液压动力传递和控制两个方面。
动力传递在挖掘机液压系统中,液压泵通过驱动电机带动转子旋转,通过吸入和压出动作将液压油从油箱吸入并排出到液压系统的工作回路中。
液压泵的排油口通过油管连接至液压元件,将液压油的液压能力传递给液压元件,从而实现液压系统的动力传递。
挖掘机液压系统的控制由液压阀完成。
液压阀控制液压油的流动方向、压力和流量,根据操作人员的指令来实现液压系统的各项功能。
液压阀通过电磁控制、机械控制或手动控制等方式来实现对液压系统的控制。
液压系统的优势挖掘机液压系统具有以下优势:1.动力输出平稳:液压系统通过液压油的压力传递动力,可以平稳地输出动力,避免机械传动中的冲击和震动。
2.调速性能好:液压系统可通过调节液压泵的转速和液压阀的开启度来控制系统的速度,实现精确的速度调节。
3.提供大扭矩和力矩:液压系统通过增加液压油的压力来提供大扭矩和力矩,适用于大功率的工作需求。
4.系统结构简单:挖掘机液压系统的结构相对简单,易于维修和保养。
挖掘机的液压系统液压挖掘机的液压系统都是由一些基本回路和辅助回路组成,它们包括限压回路、卸荷回路、缓冲回路、节流调速和节流限速回路、行走限速回路、支腿顺序回路、支腿锁止回路和先导阀操纵回路等,由它们构成具有各种功能的液压系统。
一.液压挖掘机液压系统的基本类型液压挖掘机液压系统大致上有定量系统、变量系统和定量、变量复合系统等三种类型。
1.定量系统在液压挖掘机采用的定量系统中,其流量不变,即流量不随外载荷而变化,通常依靠节流来调节速度。
根据定量系统中油泵和回路的数量及组合形式,分为单泵单回路定量系统、双泵单回路定量系统、双泵双回路定量系统及多泵多回路定量系统等。
2.变量系统在液压挖掘机采用的变量系统中,是通过容积变量来实现无级调速的,其调速方式有三种:变量泵-定量马达调速、定量泵-变量马达调速和变量泵-变量马达调速。
单斗液压挖掘机的变量系统多采用变量泵-定量马达的组合方式实现无极变量,且都是双泵双回路。
根据两个回路的变量有无关连,分为功率变量系统和全功率变量系统两种。
其中的分功率变量系统的每个油泵各有一个功率调节机构,油泵的流量变化只受自身所在回路压力变化的影响,与另一回路的压力变化无关,即两个回路的油泵各自独立地进行恒功率调节变量,两个油泵各自拥有一半发动机输出功率;全功率变量系统中的两个油泵由一个总功率调节机构进行平衡调节,使两个油泵的摆角始终相同。
同步变量、流量相等。
决定流量变化的是系统的总压力,两个油泵的功率在变量范围内是不相同的。
其调节机构有机械联动式和液压联动式两种形式。
二.YW-100型单斗液压挖掘机液压系统国产YW-100型履带式单斗液压挖掘机的工作装置、行走机构、回转装置等均采用液压驱动,其液压系统如图1所示。
该挖掘机液压系统采用双泵双向回路定量系统,由两个独立的回路组成。
所用的油泵1为双联泵,分为A、B两泵。
八联多路换向阀分为两组,每组中的四联换向阀组为串联油路。
油泵A输的压力进入第一组多路换向阀,驱动回转马达、铲斗油缸、辅助油缸,并经中央回转接头驱动右行走马达7。
小型液压挖掘机液压系统的设计背景小型液压挖掘机作为一种多功能机械设备,其液压系统设计的好坏直接关系到其起重能力、操作稳定性、寿命等方面的优劣。
因此,设计一款可靠的小型液压挖掘机液压系统是十分关键的。
液压系统概述液压系统是指由液压泵、液压缸、液压阀等组成的一套液压设备,通过液体传递压力和能量来实现机械运动的一种动力传动系统。
在小型液压挖掘机中,液压系统是其动力来源,传送液压信号以控制其各项运动。
液压系统设计要求小型液压挖掘机的液压系统设计要求如下:•操作维护简单方便;•机械运行稳定可靠;•操作响应灵敏,控制精度高;•具有良好的抗污染性能;•可提供足够的动力使机械可以适应不同的工作环境和使用要求。
液压系统设计方案液压泵液压泵是液压系统中最重要的部件之一,其作用是将机械能转化为液压能,并将液体压力传递到液压缸以推动挖掘机进行各项活动。
在小型液压挖掘机液压系统设计中,我们选择了柴油机驱动的可变量齿轮泵作为其液压泵。
这种泵具有压力高、流量大、噪音低且可靠性高的特点。
液压阀液压阀是控制液压系统中液体的流量、压力和流向的重要设备,它的质量直接影响到小型液压挖掘机的运行效率和操作稳定性。
我们选择多路节流阀、安全阀、液压控制单向阀和手动控制阀等多种液压阀件作为小型液压挖掘机液压系统中的关键部件。
液压缸液压缸是将液压系统中液体动力转化为机械动力的核心部件,是小型液压挖掘机的重要承载部件。
在小型液压挖掘机液压系统设计中,我们选择了精密加工、铸铁质量优良的单作用液压缸来满足挖掘机的动力需求。
液压油箱液压油箱是小型液压挖掘机液压系统中的重要部分,也是液压系统的储存和散热设备。
我们选择具有优异散热和稳定性能的卧式液压油箱,以满足小型液压挖掘机在高温和高负荷环境下的稳定性能。
小型液压挖掘机液压系统设计是机器性能和使用寿命的关键配置之一。
通过科学合理的设计,在满足操作稳定、运行可靠、抗污染、精度高等要求的同时,让小型液压挖掘机具有了更好的适应性和灵活性。
一、主液压回路系统的构成日立挖掘机主液压回路系统是由主液压系统和先导回路系统构成。
主液压回路将泵的液压油供给各操作机能的促动器。
二、先导回路液压操作系统的组成液压系统是由发动机、主泵、先导泵、控制阀各1台和四个液压缸、1台旋转马达及2台行泄马达组合而成、泵通过输入轴由发动机所驱动。
主泵的液压油通过控制阀流到各促动器。
先导泵的液压油流入先导回路内。
三、主回路1、主液压回路主液压回路系由吸引回路、输出回路、回油路及牌友回路所构成。
液压系统由主泵、控制阀、行走马达各一台及四个液压缸。
主泵是斜轴式排量可变型轴向活塞泵,是由发动机驱动的(发动机转速比为1.0)2、吸引回路和输出回路泵通过吸引滤油器吸引液压油箱的油,汕从泵流入控制阀,然后由油箱口放出,主泵放出的油通过控制阀流至各促动器°控制阀控制各种液圧机能,从各促动器流岀的回油通过控制阀和液压油冷却器流回液压油箱。
3、回油路每个促动器放岀的油全部通过控制阀流回液压油箱内。
回油路内有旁道单向阀,其设定压力分别为9.8x1 OMpa及4x9.8xl0Mpa o通常回油通过液压油冷却器及左侧控制阀流回液压油箱,油温低时,粘度变高,通过油冷却器时的阻力也随着增大。
油压超过9.8x1 OMpa时,回油直接流回液压油箱,可在短时间内把油温提髙到适当的髙度。
油冷却器被阻塞时,回汕通过旁道单向阀直接流回液压油箱・旁道单向阀彼阻塞时设在冷却器和液压油箱之间,其设龙压力为4x9.8xl0Mpa o液压箱内设有直流式滤油器,从左右两侧的控制阀流出的油合流后经直流式滤油器过滤,直流式滤油器内有旁道安全阀。
当滤芯阻塞使差压达9.8x1 OMpa时,旁道安全阀就打开,油直接流回液压油箱。
4、排油回路马达及刹车阀等内部漏的油以及润滑油回路内的油,全部都积蓄起来,经过排油回路流回操作汕箱。
5、行泄马达排油回路左右两行泄马达漏的油由各个马达壳的排汕口排出,合流后通过中心接头,经过直流式滤油器流回液压油箱。
挖掘机液压系统 - 装载机液压系统
概述
本文档将介绍挖掘机液压系统和装载机液压系统的基本原理和功能。
我们将讨论液压系统的组成部分,以及它们在挖掘机和装载机中的应用。
液压系统的组成部分
1. 液压液:液压系统使用特殊的液体作为传递力量的介质。
这种液体通常是一种特殊的液压油,具有良好的润滑性能和耐高温性能。
2. 液压泵:液压泵是液压系统的动力源,负责将液压液从液压油箱吸入,并通过压力传递给其他液压元件。
3. 液压马达:液压马达将液压能量转化为机械能,用于驱动挖掘机和装载机的各种动作。
4. 液压缸:液压缸是液压系统中最常见的元件之一。
它通过液压能量推动活塞,从而产生直线运动。
液压系统在挖掘机中的应用
1. 动臂和铲斗:液压系统驱动挖掘机的动臂和铲斗,使其能够进行挖掘和装载工作。
2. 行走设备:液压系统还用于控制挖掘机的行走设备,包括履带和轮子。
3. 转盘:液压系统通过液压马达控制挖掘机的转盘旋转。
液压系统在装载机中的应用
1. 升降装置:液压系统通过液压缸驱动装载机的升降装置,使其能够提升和倾斜物体。
2. 倾斜装置:液压系统还用于控制装载机的倾斜装置,使其能够倾斜斗以更好地装载物体。
3. 装料斗:液压系统通过液压马达控制装载机的装料斗,使其能够打开和关闭。
总结
挖掘机和装载机的液压系统是关键的动力传递系统,它们实现了各种重要的功能,包括挖掘、装载和运输物体。
了解液压系统的基本原理和组成部分对于维护和操作这些机器至关重要。
以上是对挖掘机液压系统和装载机液压系统的简要介绍,希望能对您有所帮助。
参考资料。
液压挖掘机液压系统概论
【摘要】本文从对液压挖掘机液压系统组成的概述入手,对液压挖掘机液压系统的基本要求及液压系统的基本类型与特点进行了分析和探讨,希望能够起到抛砖引玉的作用。
【关键词】液压挖掘机;液压系统;概论
挖掘机和液压传动紧密地联系在一起的,所谓挖掘机主要是指液压挖掘机,液压技术是挖掘机的技术基础。
由于挖掘机对液压技术提出了很高的要求,液压传动很多的先进技术体现在挖掘机上,从而极大推动了液压技术的发展,液压挖掘机是一个很大家族,目前向小型化和大型化两个方向发展,从而促使液压元件的高压化、小型化和大型化。
1液压挖掘机液压系统的构成
按照液压挖掘机工作装置、上车回转机构及下车行走机构的传动要求,把各种液压元件用管路有机地连接起来的组合体,称为挖掘机的液压系统。
一套完整的挖掘机液压系统同样由五个部分组成,即动力元件(液压泵)、执行元件(马达、油缸)、控制元件(液压多路阀)、辅助元件和液压油,其功能是以油液为工作介质,利用液压泵将发动机的机械能转变为液压能并进行传送,然后通过液压缸和液压马达等执行元件再将液压能再转变为机械能,实现挖掘机的各种动作。
2液压挖掘机对液压系统的基本要求
液压挖掘机的动作复杂,机构经常启动、制动、换向,负载变化大,冲击和振动频繁,而且野外施工作业,温度变化和地理条件差别大,因此,应根据液压挖掘机的工作特点和环境特点,对其液压系统提出一些有别于其他应用的基本要求。
①挖掘机作为生产设备,工作时间长,能量消耗大,要求液压系统效率高,节能降低能耗和排放,使总发热量小,液压油温不要太高,因此对各液压元件和管路都要求降低能耗,以充分发挥发动机的动力性和燃油经济性。
②液压系统和液压元件在大负载和剧烈振动冲击作用下,应具有足够的可靠性和耐久性。
③由于液压挖掘机作业现场尘土多,液压油容易被污染,因此液压系统的密封性能要好,整个液压系统要设置滤油器和防尘装置。
④挖掘机技术通常采用液压先导或电液伺服操纵装置,提高液压挖掘机操作的舒适性,减轻操作人员的劳动强度。
个别微型挖掘机操控也采用机械式操纵装置。
⑤在液压系统中采用先进的自动控制技术,提高液压挖掘机的技术性能指标,使液压挖掘机具有节能、高效和自动适应负载变化的特点等。
⑥挖掘机作业需各液压作用元件单独动作,但更多情况下要求各作用元件互相配合实现复合动作,而且动臂、斗杆、铲斗、回转和行走之间几乎都要复合动作,复合动作范围广,形式多样复杂,同时要求复合动作时有良好的复合操纵性能,能合理地分配共同动作时各液压作用元件的流量和功率。
为了实现这些要求液压系统必须采用各种措施,因此挖掘机液压系统比较复杂。
3液压挖掘机液压系统的基本类型与特点分析
随着技术进步及全球经济一体化的迅速发展,液压挖掘机所用液压元件逐步实现了标准化、系列化,其规格、品种、质量、性能都有了很大提高,一些专业的液压件厂家能够为液压挖掘机的设计制造提供系列化的配套元件。
微电子技术、液压伺服技术以及新材料、新工艺的发展和应用,使应用于液压挖掘机的液压元件及液压系统的性能和质量得到了显著改善,控制功能不断增强,从而使现代液压挖掘机发展成为具有完善自动控制功能的土石方施工机械。
下面简单介绍应用于液压挖掘机的各种基本液压系统。
3.1液压挖掘机定量系统
液压挖掘机定量系统采用定量泵为液压系统提供压力油。
系统中泵的输出流量恒定,不能随外负荷的变化而使流量做相应的变化。
液压挖掘机在作业过程中,外负载是随作业工况不断变化的,发动机功率只能按最大负载压力和作业速度来确定。
一般情况下,单泵定量系统的平均负荷为最大负荷的60%左右,所以发动机的功率平均只用了约60%。
因流量恒定,当负荷发生变化时,不能通过改变流量来改变作业速度。
为了获得不同的作业速度,常依靠多路阀来进行节流调节,其结果是发热量大,功率浪费严重。
3.2液压挖掘机变量系统
20世纪60年代,液压挖掘机上开始应用恒功率变量泵,其目的是既能充分利用发动机功率,又不会使发动机过载。
采用恒功率变量泵与定量马达等组成变量系统,一般为双泵双回路系统,它能随负载变化而自动改变液压泵的流量,使发动机经常接近于其设计功率工作。
随着液压技术的发展,针对挖掘机作业循环中的各种动作,以提高复合动作的准确性为目的,将恒功率控制原理应用于双泵系统,可以组合成分功率调节系统、全功率调节系统和交叉功率调节系统等,其功能各有所长。
简述如下:
全功率液压泵中,双泵排量靠机械或液压机构保持一致,任何情况下双泵流量都相同。
其优点在于:第一,能够在一定条件下充分利用发动机功率;第二,两个泵各自都能够吸收100%的发动机功率,提高了工作装置的作业能力;第三,结构简单。
由于以上特点,全功率液压泵曾经在挖掘机上得到大量应用。
但由于其本身的结构特点,全功率系统不可避免地存在功率损失,因此目前的大中型挖掘机已经基本上不采用。
分功率系统只是简单地将两个恒功率液压泵组合在一起,每一个液压泵最多吸收50%的发动机额定功率。
这种系统的优点在于,两个泵的流量可以根据各自回路的负载单独变化,对负载的适应性优于全功率系统。
其主要缺点在于,由于每个泵最多只能吸收50%的发动机功率,而当其中一个泵工作于起调压力之下时,另外一个泵却不能吸收这空余出来的功率,使发动机功率得不到充分利用,从而限制了挖掘机的工作能力,因此这种系统在大中型挖掘机上也基本上被淘
汰。
针对全功率系统和分功率系统所存在的不足,国外一些液压件生产商开发了交叉功率传感双泵系统,这种系统既能像全功率系统那样充分利用发动机功率,又能像分功率系统那样根据每一个泵的负载状况调整输出流量。
3.3液压挖掘机系统控制方式
单纯的泵控系统能使挖掘机具有更高的液压效率,但出于成本和结构方面的考虑,不可
能为每一个执行机构都配备一个单独的液压泵。
由于必须采用多个执行机构共用一个液压泵的方案,因此需要用阀控系统控制多个执行机构间的流量分配。
另外,阀控系统的响应速度远高于泵控系统,有利于挖掘机的操作。
在现代挖掘机中,多采用将泵控和阀控结合起来的方法,在保留了阀控系统优点的同时,使液压效率得到大幅度提高。
根据多路阀的形式,将泵控和阀控结合起来的控制方法有多种,目前最常用的有负流量控制、正流量控制、负荷传感控制。
这些技术发展到今天,已经成熟地应用于挖掘机液压系统中,但是随着技术进步的需求,仍然有许多值得改进的地方。
4结束语
液压系统设计得合理与否,对挖掘机的性能起着决定性的作用。
同样的元件,若系统设计的不同,则机器的性能差异很大。
随着工程机械特别是挖掘机行业井喷式发展时期的结束,用户对机器的性能要求将更加苛刻,关注工作效率的同时,用户对燃油经济性、操控舒适性的要求越来越高,因此,作为液压元件应用性企业或科研机构,弄清所选元件的设计结构及原理,分析和研究各种液压系统,在设计之初明确机器关键的目标特性,从而使液压件在系统设计应用时充分发挥功能,也可以通过各种方式消除部分元器件对机器目标特性有影响的薄弱环节。
参考文献:
[1]刘延俊主编,液压与气压传动,清华大学出版社,2010(12).
[2]同济大学主编,单斗液压挖掘机,中国建筑工业出版社.。