高考物理三精考点考点3安培力带电粒子在磁场中运动名卷考点汇
- 格式:doc
- 大小:785.00 KB
- 文档页数:15
⾼⼆物理磁场中的安培⼒知识点 安培⼒是⾼⼆物理教学中的⼀个重要内容,具体有哪些知识点我们需要了解?下⾯是店铺给⼤家带来的⾼⼆物理磁场中的安培⼒知识点,希望对你有帮助。
⾼⼆物理磁场中的安培⼒知识点 ⼀、安培⼒的⽅向 安培⼒——磁场对电流的作⽤⼒称为安培⼒。
左⼿定则:伸开左⼿,使拇指与四指在同⼀个平⾯内并跟四指垂直,让磁感线垂直穿⼊⼿⼼,使四指指向电流的⽅向,这时拇指所指的就是通电导体所受安培⼒的⽅向。
⼆、安培⼒⽅向的判断 1.安培⼒的⽅向总是垂直于磁场⽅向和电流⽅向所决定的平⾯,在判断安培⼒⽅向时⾸先确定磁场和电流所确定的平⾯,从⽽判断出安培⼒的⽅向在哪⼀条直线上,然后再根据左⼿定则判断出安培⼒的具体⽅向。
2.已知I、B的⽅向,可唯⼀确定F的⽅向;已知F、B的⽅向,且导线的位置确定时,可唯⼀确定I的⽅向;已知F、I的⽅向时,磁感应强度B的⽅向不能唯⼀确定。
3.由于B、I、F的⽅向关系在三维⽴体空间中,所以解决该类问题时,应具有较好的空间想像⼒.如果是在⽴体图中,还要善于把⽴体图转换成平⾯图。
三、安培⼒的⼤⼩ 实验表明:把⼀段通电直导线放在磁场⾥,当导线⽅向与磁场⽅向垂直时,导线所受到的安培⼒最⼤;当导线⽅向与磁场⽅向⼀致时,导线所受到的安培⼒等于零;当导线⽅向与磁场⽅向斜交时,所受到的安培⼒介于最⼤值和零之间。
⾼⼆物理磁场知识点 1.磁感应强度是⽤来表⽰磁场的强弱和⽅向的物理量,是⽮量,单位T),1T=1N/Am 2.安培⼒F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培⼒(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹⼒f=qVB(注V⊥B);质谱仪〔见第⼆册P155〕{f:洛仑兹⼒(N),q:带电粒⼦电量(C),V:带电粒⼦速度(m/s)} 4.在重⼒忽略不计(不考虑重⼒)的情况下,带电粒⼦进⼊磁场的运动情况(掌握两种): (1)带电粒⼦沿平⾏磁场⽅向进⼊磁场:不受洛仑兹⼒的作⽤,做匀速直线运动V=V0 (2)带电粒⼦沿垂直磁场⽅向进⼊磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度⽆关,洛仑兹⼒对带电粒⼦不做功(任何情况下);(c)解题关键 ⾼⼆物理学习⽅法 ⼀、及时完成学习任务,注重基础知识的掌握。
考点11 安培力安培力(选修3-1第三章:磁场的第四节通电导线在磁场中受到的力)★★★○○○○1、安培力:通电导线在磁场中受到的力称为安培力。
2、安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内.让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,如图所示.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.3、安培力的大小:F= BILsinθ(θ为磁感应强度的方向与导线方向的夹角,如图所示)(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.1、安培力的分析与计算:(计算安培力公式F=BIL)(1)B与L垂直;(2)L是有效长度①公式F=ILB中L指的是“有效长度”。
当B与I垂直时,F最大,F=ILB;当B与I平行时,F=0。
②弯曲导线的有效长度L,等于连接两端点线段的长度(如图所示);相应的电流沿L由始端流向末端。
2、与安培力有关的力学综合题的分析思路(1)安培力作用下的物体平衡问题,解题步骤和共点力的平衡问题相似,一般是:①先进行受力分析,画出受力分析图。
②根据共点力平衡的条件列出平衡方程进行求解。
其中重要的是在受力分析过程中不要漏掉了安培力。
(2)安培力作用下的加速问题与动力学问题一样,关键是做好受力分析,然后根据牛顿第二定律求出加速度,最后利用运动学公式求解。
(3)常见的还有安培力与闭合电路欧姆定律相结合的题目,解答时主要应用的知识有:①闭合电路欧姆定律。
②安培力的公式F=BIL及左手定则。
③物体的平衡条件、牛顿第二定律、运动学公式。
3、安培力最拿分点在于它这种力常与必修一的受力分析、力的平衡、牛顿运动定律、或能关系等相结合,而出一些综合性较强的题目,考查的覆盖面十分广泛,是拿分的好地方。
例:如图所示,导线框中电流为I,导线框垂直于磁场放置,磁感应强度为B,AB与CD相距d,导线MN与CD的夹角θ,则MN所受安培力大小【】A. BIdB. BIdsinθC. F=sin BId θD. F=BIdcosθ 【答案】C【点拨】本题是安培力的分析和计算问题.安培力大小的一般计算公式是F=BILsinα,α是导体与磁场的夹角,当B 、I 、L 互相垂直的时候安培力最大为F=BIL.1、(多选)关于磁场对通电直导线的作用力的大小,下列说法中正确的是( )A .通电直导线跟磁场方向平行时作用力为零B .通电直导线跟磁场方向垂直时作用力最大C .作用力的大小跟导线与磁场方向的夹角无关D .通电直导线跟磁场方向斜交或成锐角时肯定有作用力【答案】ABD【精细解读】安培力既垂直于通电导线,又垂直于磁场.当导线与磁场方向垂直时,安培力最大,当导线与磁场方向平行时,安培力为零,选项A 、B 正确,选项C 错误;通电直导线跟磁场方向斜交时,可将磁场沿平行于导线方向和垂直于导线方向进行分解,垂直于导线方向的磁场为有效磁场,安培力不为零,选项D 正确.2、(多选)(河北省鸡泽县第一中学2020学年高二10月月考)一根长0.20m 、通有2.0A 电流的通电直导线,放在磁感应强度为0.50T 的匀强磁场中,受到的安培力大小可能是( )A. 0 NB. 0.20 NC. 0.40 ND. 0.60 N【答案】AB【精细解读】当通电导线与磁场垂直时,导线所受的安培力最大:0.5 2.00.20.2max F BIL N N ==⨯⨯=,当导线与磁场平行时,导线所受磁场力最小为零,所以导线所受磁场力的范围为0~0.2N 。
2022年高考物理真题分类汇编:磁场[2022上海21].形象描述磁场分布的曲线叫做____________,通常___________的大小也叫做磁通量密度。
【答案】磁感线;磁感应强度【解析】为了形象的描述磁场而假想出来的曲线,曲线上任意一点的切线方向均表示该位置的磁场方向,这样的曲线称为磁感线;磁场的强弱大小用磁感应强度表示,在磁通量中有:B SΦ=,所以磁感应强度也称为刺痛密度。
[2022上海8].如图,一束电子沿z 轴正向流淌,则在图中y 轴上A 点的磁场方向是(A )+x 方向(B )-x 方向 (C )+y 方向 (D )-y 方向 【答案】A【解析】据题意,电子流沿z 轴正向流淌,电流方向向z 轴负向,由安培定则可以推断电流激发的磁场以z 轴为中心沿顺时针方向(沿z 轴负方向看),通过y 轴A 点时方向向外,即沿x 轴正向,则选项A 正确。
[2022理综I-15]现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开头被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开头被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为( )A. 11B. 12C. 121D. 144 [答案] D 【解析】设质子的质量数和电荷数分别为1m 、1q ,一价正离子的质量数和电荷数为2m 、2q ,对于任意粒子,在加速电场中,由动能定理得:2102qU mv =- 得 2qU v m = ①在磁场中应满足 2v qvB m r= ②由题意,由于两种粒子从同一入口垂直进入磁场,从同一出口垂直离开磁场,故在磁场中做匀速圆周运动的半径应相同.由①②式联立求解得匀速圆周运动的半径12mUr B q=,由于加速电压不变,故1212212111r B m q r B m q =⋅⋅= 其中211212B B q q ==,,可得121144m m = 故一价正离子与质子的质量比约为144[考点]带电粒子在电场、磁场中的运动、质谱仪。
高二物理下册带电粒子在匀强磁场中的运动知识点带电粒子在匀强磁场中的运动是高中物理常见考题,下面是店铺给大家带来的高二物理下册带电粒子在匀强磁场中的运动知识点,希望对你有帮助。
一、高二物理基础知识:1、洛仑兹力洛伦兹力是运动于电磁场的带电粒子所受的力。
通电导线所受到的安培力实际上是作用在运动电荷上的洛仑兹力的。
2、洛仑兹力的方向将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
但须注意,运动电荷是正的,大拇指的指向即为洛伦兹力的方向。
反之,如果运动电荷是负的,仍用四指表示电荷运动方向,那么大拇指的指向的反方向为洛伦兹力方向。
另一种对负电荷应用左手定则的方法是认为负电荷相当于反向运动的正电荷,用四指表示负电荷运动的反方向,那么大拇指的指向就是洛伦兹力方向。
3、洛仑兹力的方程在电动力学里,洛伦兹力(Lorentz force)是运动于电磁场的带电粒子所受的力。
根据洛伦兹力定律,洛伦兹力可以用方程,称为洛伦兹力方程,表达为:F=q(E+v×B)其中, F是洛伦兹力, q是带电粒子的电荷量,E是电场强度, v 是带电粒子的速度, B是磁感应强度。
4、洛仑兹力作用效果特点由于洛仑兹力总是垂直于电荷运动方向,因此洛仑兹力总是功。
它只能改变运动电荷的速度(即动量的方向),不能改变运动电荷的速度 (或动能)。
二、高二物理重点、疑点:1、洛伦兹力公式F=qvB是如何推导的?直导线长L,电流为I,导体中运动电荷数为n,截面积为S,电荷的电量为q,运动速度为v,则安培力F′=I LB=nFF=q(E+v×B)因为I=NqSv(N为单位体积内的电荷数)所以F= 式中n=NSL故F=qvB。
2、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间?(1)圆心的确定。
因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和射出磁场的两点)的f的方向,其延长线的交点即为圆心。
3.带电粒子在匀强磁场中的运动1.了解带电粒子沿着垂直于磁场方向射入磁场时,粒子做匀速圆周运动。
2.能用洛仑兹力分析带电粒子在匀强磁场中的圆周运动。
3.了解带电粒子在匀强磁场中的偏转及其应用。
知识点一 带电粒子在匀强磁场中的运动 1.用洛伦兹力演示仪观察运动电子在磁场中运动实验操作 轨迹特点 不加磁场时 电子束的径迹是直线 给励磁线圈通电后电子束的径迹是圆 保持电子速度不变,改变磁感应强度 磁感应强度越大,轨迹半径越小 保持磁感应强度不变,改变电子速度电子速度越大,轨迹半径越大2.洛伦兹力的作用效果(1)洛伦兹力不改变带电粒子速度的大小,或者说,洛伦兹力对带电粒子不做功。
(2)洛伦兹力方向总与运动方向垂直,正好起到了向心力的作用。
知识点二 带电粒子在磁场中做圆周运动的半径和周期1.带电粒子在匀强磁场中做匀速圆周运动的向心力由洛伦兹力提供:vqB =m v 2r。
2.带电粒子做圆周运动的轨道半径和周期(1)轨道半径:r =mvqB。
粒子的轨道半径与粒子的速率成正比(2)运动周期:T =2πr v =2πm qB 。
带电粒子的周期与轨道半径和速度无关,而与qm成反比。
由于带电粒子初速度方向和洛伦兹力的方向都在与磁场方向垂直的平面内,所以粒子在这个平面内运动。
思考辨析(正确的打“√”,错误的打“×”)(1)带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速度的大小有关,而周期与速度、半径都无关。
( )(2)电子在匀强磁场中做匀速圆周运动,速率越大,周期越大。
( )(3)带电粒子进入匀强磁场中一定做匀速圆周运动。
( )[答案](1)√(2)×(3)×现已知道宇宙射线是“高速飞行的粒子”。
宇宙射线的粒子主要是由质子或氦、铁等的原子核组成,此外电子、光子、中微子等也作为宇宙射线来到地球。
但是质子或原子核、电子等是带电粒子。
一旦带电粒子飞到磁场中,会受到洛伦兹力影响,带电粒子运动轨迹会发生弯曲。
安培力高考知识点一、安培力1.安培力:通电导线在磁场中受到的作用力叫做安培力.说明:磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 实验:注意条件①I⊥B时 A:判断受力大小由偏角大小判断改变I大小,偏角改变;I大小不变,改变垂直磁场的那部分导线长度;改变B大小.B:F安方向与I方向B方向关系:改变I方向;改变B方向;同时改变I和B方向F安方向:安培左手定则,F安作用点在导体棒中心。
通电的闭合导线框受安培力为零② I//B时, F安=0,该处并非不存在磁场。
③ I与B成夹角时,F=BILSin为磁场方向与电流方向的夹角。
有用结论:“同向电流相互吸引,反向电流相排斥”。
不平行时有转运动到方向相同且相互靠近的趋势。
2.安培力的计算公式:F=BILsinθθ是I与B的夹角;① I⊥B时,即θ=900,此时安培力有最大值;公式:F=BIL② I//B时,即θ=00,此时安培力有最小值,F=0;③ I与B成夹角时,00< p="">3.安培力公式的适用条件:①公式F=BIL一般适用于匀强磁场中I⊥B的情况,对于非匀强磁场只是近似适用如对电流元但对某些特殊情况仍适用. 如图所示,电流I1//I2,如I1在I2处磁场的磁感应强度为B,则I1对I2的安培力F=BI2L,方向向左,同理I2对I1,安培力向右,即同向电流相吸,异向电流相斥.②根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力.两根通电导线间的磁场力也遵循牛顿第三定律. I1 I2二、左手定则 1.安培力方向的判断——左手定则:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向.2.安培力F的方向:B与I的方向不一定垂直.3.安培力F、磁感应强度B、电流1三者的关系①已知I,B的方向,可惟一确定F的方向;②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向;③已知F,1的方向时,磁感应强度B的方向不能惟一确定.4.由于B,I,F的方向关系常是在三维的立体空间,所以求解本部分问题时,应具有较好的空间想象力,要善于把立体图画变成易于分析的平面图,即画成俯视图,剖视图,侧视图等.安培力的性质和规律;①公式F=BIL中L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端./如图所示,甲中:l,乙中:L/=d直径=2R半圆环且半径为R如图所示,弯曲的导线ACD的有效长度为l,等于两端点A、D所连直线的长度,安培力为:F = BIl②安培力的作用点为磁场中通电导体的几何中心;③安培力做功:做功的结果将电能转化成其它形式的能.2、安培力作用下物体的运动方向的判断1电流元法:即把整段电流等效为多段直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断整段电流所受合力方向,最后确定运动方向.2特殊位置法:把电流或磁铁转到一个便于分析的特殊位置后再判断安培力方向,从而确定运动方向.3等效法:环形电流和通电螺线管都可以等效成条形磁铁,条形磁铁也可等效成环形电流或通电螺线管,通电螺线管也可以等效成很多匝的环形电流来分析.4利用结论法:①两电流相互平行时无转动趋势,同向电流相互吸引,反向电流相互排斥;②两电流不平行时,有转动到相互平行且电流方向相同的趋势.5转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受电流作用力,从而确定磁体所受合力及运动方向.6分析在安培力作用下通电导体运动情况的一般步骤:①画出通电导线所在处的磁感线方向及分布情况②用左手定则确定各段通电导线所受安培力③据初速方向结合牛顿定律确定导体运动情况7磁场对通电线圈的作用:若线圈面积为S,线圈中的电流强度为I,所在磁场的磁感应强度为B,线圈平面跟磁场的夹角为θ,则线圈所受磁场的力矩为:M=BIScosθ.一、磁场磁极和磁极之间的相互作用是通过磁场发生的。
选修3-1磁场力问题重要考点总结考点1 磁场的理解及安培定则【核心要素精讲】1.磁场的特点:(1)磁场是磁体、电流周围存在的一种特殊物质,是客观存在的。
(2)磁场的强弱由磁场本身决定,与放入其中的电流元的大小无关。
(3)磁场既有强弱也有方向,磁场的强弱和方向可用磁感应强度来表示,也可用磁感线定性地表示。
2.电流的磁场——安培定则:3.磁场的叠加:磁感应强度是矢量,合成与分解遵循平行四边形定则。
【典例1】(2016·北京高考)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
”进一步研究表明,地球周围地磁场的磁感线分布示意如图。
结合上述材料,下列说法不正确的是 ( )A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用1.科考队进入某一磁矿区域后,发现指南针原来指向正北的N 极逆时针转过30(如图所示的虚线),设该处的地磁场磁感应强度水平分量为B,则磁矿所产生的磁感应强度水平分量的最小值为 ( )A.BB.2BC. B/2D.B2. (多选)如图,两根平行长直导线相距2l ,通有大小相等、方向相同的恒定电流;a 、b 、c 是导线所在平面内的三点,左侧导线与它们的距离分别为 、l 和3l 。
关于这三点处的磁感应强度,下列判断正确的是 ( )A.a 处的磁感应强度大小比c 处的大B.b 、c 两处的磁感应强度大小相等C.a 、c 两处的磁感应强度方向相同D.b 处的磁感应强度为零考点2判断安培力作用下导体的运动【核心要素精讲】1.判断导体运动情况的基本思路:首先明确导体所在位置的磁感线分布情况,然后利用左手定则判定导体的受力情况,进而确定导体的运动方向或运动趋势的方向。
2.常用判断方法: 电流元法,特殊位置法,等效法,结论法【高考命题探究】【典例2】(2017·徐州模拟)通有电流的导线L1、L2处在同一平面(纸面)内,L1是固定的,L2可绕垂直纸面的固定转轴O转动(O为L2的中心),各自的电流方向如图所示。
考点3 安培力带电粒子在磁场中运动【原题再现】23. 【加试题】如图所示,在平面直角坐标系xoy中的有一个等腰直角三角形硬质细杆框架FGH,框架竖直放在粗糙的水平面上,其中FG与地面接触。
空间存在着垂直于框架平面的匀强磁场,磁感应强度为B,FG的长度为8L,在框架中垂线OH上S(0,L)处有一体积可忽略的粒子发射装置,在该平面内向各个方向发射速度大小相等带正电大量的同种粒子,射到框架上的粒子立即被框架吸收.粒子的质量为m,电荷量为q,不计粒子间的相互作用以及粒子的重力.(1)试问速率在什么范围内所有粒子均不可能打到框架上?(2)如果粒子的发射速率为,求出框架上能被粒子打中的长度.(3)如果粒子的发射速率仍为,某时刻同时从S点发出粒子,求从第一个粒子到达底边FG至最后一个到达底边的时间间隔.【答案】(1)(2)(3)安培力带电粒子在磁场中运动★★★★○○○○带电粒子在匀强磁场中的运动找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,建立运动时间t和转过的圆心角θ之间的关系是解题的关键.(1)圆心的确定①已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图10甲所示,图中P为入射点,M为出射点).②已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).(2)半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.(3)运动时间的确定:电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿出有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间则与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键;粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时 间表示为:T t πθ2=T (或vR t θ=)1、带电体在磁场中的临界问题的处理基本思路(1)画轨迹:即画出运动轨迹,并确定圆心,用几何方法求半径.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式. 2、带电粒子在有界磁场中运动的几种常见情形 (1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)在竖直平面内建立一平面直角坐标系xoy ,x 轴沿水平方向,如图甲所示.第二象限内有一水平向右的匀强电场,场强为E 1.坐标系的第一、四象限内有一正交的匀强电场和匀强交变磁场,电场方向竖直向上,场强E 2=12E 1,匀强磁场方向垂直纸面.处在第三象限的发射装置(图中未画出)竖直向上射出一个比荷q m=102C/kg 的带正电的粒子(可视为质点),该粒子以v 0=4m/s 的速度从-x 上的A 点进入第二象限,并以v 1=8m/s 速度从+y 上的C 点沿水平方向进入第一象限.取粒子刚进入第一象限的时刻为0时刻,磁感应强度按图乙所示规律变化(以垂直纸面向外的磁场方向为正方向),g =10 m/s 2.试求:(1)带电粒子运动到C 点的纵坐标值h 及电场强度E 1;(2)+x 轴上有一点D ,OD=OC ,若带电粒子在通过C 点后的运动过程中不再越过y 轴,要使其恰能沿x 轴正方向通过D 点,求磁感应强度B 0及其磁场的变化周期T 0;(3)要使带电粒子通过C 点后的运动过程中不再越过y 轴,求交变磁场磁感应强度B 0和变化周期T 0的乘积00T B 应满足的关系.【答案】(1)0.8h m =、C N E /2.01=(2).....)3,2,1)((2.00==n T n B 、......)3,2,1)((20200====n s nqB m T T ππ(3)005660T T B π≤=【名师点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径1、边长为L的正方形线圈A,通有逆时针方向的恒定电流I,用两根轻质绝缘细线静止地悬挂在水平长直导线MN的正下方h处,如图所示。
当导线MN中无电流时,两细绳中张力均为T;当通过MN的电流为I1时,两细绳中张力均减为αT (0<α<1);而当通过MN的电流为I 2时,细绳中张力恰好为零。
已知长直通电导线周围磁场的磁感应强度B 与到导线的距离r 成反比(即lB k r=,k 为常数)。
由此可知,MN 中的电流方向和电流大小之比I 1: I 2分别为: ( )A .向左,1+αB .向右,1+αC .向左,1-αD .向右,1-α 【答案】C2、(多选)绝缘光滑斜面与水平面成α角,质量为m 、带电荷量为-q (q>0)的小球从斜面上的h 高度处释放,初速度为0v (0v >0),方向与斜面底边MN 平行,如图所示,整个装置处在匀强磁场B 中,磁场方向平行斜面向上。
如果斜面足够大,且小球能够沿斜面到达底边MN 。
则下列判断正确的是: ( )A 、匀强磁场磁感应强度的取值范围为00mgB qv ≤≤B 、匀强磁场磁感应强度的取值范围为0cos 0mg B qv α≤≤C 、小球在斜面做变加速曲线运动D 、小球达到底边MN的时间t =【答案】BD 【解析】【名师点睛】考查曲线运动的条件,掌握牛顿第二定律与运动学公式的内容,理解洛伦兹力虽受到速度大小影响,但没有影响小球的合力,同时知道洛伦兹力不能大于重力垂直斜面的分力.3、如图(a)所示,在竖直平面内建立直角坐标系x o y ,整个空间内都存在垂直于坐标平面向外的匀强磁场和水平向右的匀强电场,匀强电场的方向与x 轴止方向夹角为450。
已知带电粒子质量为m 、电量为+q ,磁感应强度大小为B ,电场强度大小E mgq=,重力加速度为g.(1)若粒子在xoy 平面内做匀速直线运动,求粒子的速度v 0;(2)t=0时刻的电场和磁场方向如图(a)所示,若电场强度和磁感应强度的大小均不变.而方向随时间周期性的改变,如图(b)所示。
将该粒子从原点O 由静止释放,在0一2T时间内的运动轨迹如图(c )虚线O MN 所示,M 点为轨迹距y 轴的最远点,M 距y 轴的距离为d 。
已知在曲线上某一点能找到一个和它内切的半径最大的圆,物休经过此点时,相当于以此圆的半径在做圆周运动,这个圆的半径就定义为曲线上这点的曲率半径。
求:①粒子经过M点时曲率半径ρ②在图中画出粒子从N点回到O点的轨迹。
【答案】(1)vqB=,沿y轴负方向(2)mggdqBmgd-=22ρ,如图所示【解析】到达M 点时,其两分速度同向,沿x轴正方向的位移为d,则有02v v = r d 2=【名师点睛】带电粒子在复合场中运动问题的分析思路1.正确的受力分析除重力、弹力和摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态找出物体的速度、位置及其变化特点,分析运动过程.如果出现临界状态,要分析临界条件带电粒子在复合场中做什么运动,取决于带电粒子的受力情况.(1)当粒子在复合场内所受合力为零时,做匀速直线运动(如速度选择器).(2)当带电粒子所受的重力与电场力等值反向,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.(3)当带电粒子所受的合力是变力,且与初速度方向不在一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连续通过几个情况不同的复合场区,因此粒子的运动情况也发生相应的变化,其运动过程也可能由几种不同的运动阶段所组成1、(多选)如图所示,一条形磁铁放在水平桌面上,在其左上方固定一根与磁铁垂直的长直导线,当导线中通以图示方向的电流时:()A.磁铁对桌面的压力增大B.磁铁对桌面的压力减小C.磁铁受到向右的摩擦力作用D.磁铁受到向左的摩擦力作用【答案】BC【解析】根据条形磁体磁感线分布情况得到直线电流所在位置磁场方向(切线方向),再根据左手定则判断安培力方向,如图;根据牛顿第三定律,电流对磁体的作用力向左上方,如图;根据平衡条件,可知通电后支持力变小,静摩擦力变大,故磁铁对桌面的压力变小;而静摩擦力向右.故选BC.2、如图所示,两平行金属导轨CD、EF间距为l,与电动势为E的电源相连,质量为m、电阻为R的金属棒ab垂直于导轨放置构成闭合回路,回路平面与水平面成θ角,回路其余电阻不计.为使ab棒静止,需在空间施加的匀强磁场磁感强度的最小值及其方向分别为:()A. mgREI,水平向右 B.cosmgREIθ,垂直于回路平面向上C.tanmgREIθ,竖直向下 D.sinmgREIθ,垂直于回路平面向下【答案】D【解析】3、如图所示,一个静止的质量为m、带电荷量为q的粒子(不计重力),经电压U加速后垂直进人磁感应强度为B的匀强磁场,粒子在磁场中转半个国后打在P点,设OP=x,能够正确反应x与U之间的函数关系的是:()【答案】B【解析】【名师点睛】本题是质谱仪的原理,根据物理规律得到解析式,再由数学知识选择图象是常用的方法和思路。
4、在水平地面上方有正交的匀强电场和匀强磁场,匀强电场方向竖直向下,匀强磁场方向水平向里。
现将一个带正电的金属小球从M 点以初速度v 0水平抛出,小球着地时的速度为v 1,在空中的飞行时间为t 1。
若将磁场撤除,其它条件均不变,那么小球着地时的速度为v 2,在空中飞行的时间为t 2。
小球所受空气阻力可忽略不计,则关于v 1和v 2、t 1和t 2的大小比较,以下判断正确的: ( )A .v 1>v 2,t 1>t 2B .v 1<v 2,t 1<t 2C .v 1=v 2,t 1<t 2D .v 1=v 2,t 1>t 2【答案】D【解析】因为洛伦兹力对粒子永远不做功,则根据动能定理,磁场存在与否,重力和电场力对小球做功相同,则小球着地时的速率都应该是相等的,即12v v .存在磁场时,小球就要受到向右上方的洛伦兹力,有竖直向上的分力,使得小球在竖直方向的加速度小于没有磁场时的加速度,在空中飞行的时间要更长些.即12t t >,故D 正确。
【名师点睛】未撤除磁场时,小球受到重力、电场力和洛伦兹力,但洛伦兹力不做功.根据动能定理分析速度大小关系.分析洛伦兹力对小球运动影响,分析时间关系。