反比例函数九年级数学教案
- 格式:doc
- 大小:474.50 KB
- 文档页数:13
沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。
本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。
通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。
二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。
但是,对于反比例函数这一抽象的概念,学生可能难以理解。
因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。
2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。
3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。
4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。
六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。
2.教学素材:准备一些实际问题,让学生运用反比例函数解决。
3.教学设备:投影仪、计算机、黑板等。
七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。
《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。
《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:教师提出问题。
学生思考、交流,回答问题。
教师根据学生活动情况进行补充和完善。
二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。
)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。
)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。
在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。
《1 反比例函数》教案
教学目标:
1、从现实情境和已有的知识经验出发,讨论两个变量之间的函数关系,加深对函数概念的理解.
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
3、结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.
教学重点:
理解和领会反比例函数的概念.
教学难点:
从现实环境和所学知识人手,探索两个变量之间的函数关系.
教学过程:
一、问题提出
电流I、电阻R、电压U之间满足关系式U=IR,当U=220
V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成表格(见可悲吧):当R越来越大时,I怎样变化?当R 越来越小呢?(3)变量I是R的函数吗?为什么?
根据提供的信息,对多对关系式的分析,可以得出:当电阻R越来越大时,电流I越来越小,当R越来越小时,I越来越大.当给定一个R的值时,相应地就确定了一个I值,因此,I是R的函数.
二、做一做
1、一个矩形的面积为20cm2,相邻的两条边长分别为x cm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2、某村有耕地346.2公顷,人数数量n每年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的
函数吗?是反比例函数吗?为什么?
3、y是x的反比例函数,表格(见课本)给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成表格.
三、课堂小结
反比例函数概念形成的过程中,大家应充分利用已有的生活经验和背景知识,注意概念中变量的相依关系及变化规律,逐步加深理解.通过举例、说理、讨论等活动,用数学眼光审视某些实际现象.。
《反比例函数》教案一、本章知识网络图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧反比例函数与实际问题三角形矩形问题反比例函数与面积有关对称性增减性位置形状图象和性质定义及表示形式二、知识点及考点: (一)反比例函数的概念: 知识要点:1、一般地,形如 y = x k( k 是常数, k = 0 ) 的函数叫做反比例函数。
注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式:(A )y = x k(k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx-1(k ≠0)例题讲解:有关反比例函数的解析式(1)下列函数,① 1)2(=+y x ②.11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x =;其中是y 关于x 的反比例函数的有:_________________。
(2)函数22)2(--=a x a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2(3)若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.(4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( )(2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( )(5)反比例函数(0ky k x =≠)的图象经过(—2,5, n ),求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.(7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(二)反比例函数的图象和性质: 知识要点:1、形状:图象是双曲线。
反比例函数-北师大版九年级数学上册教案一、教学目标通过本课的学习,学生应该能够:1.掌握反比例函数的概念和性质;2.理解反比例函数的图像特征;3.能运用反比例函数解决实际问题。
二、教学重点1.反比例函数的概念和性质;2.反比例函数的图像特征。
三、教学难点反比例函数实际应用问题的解决。
四、教学过程1. 导入新知本课学习的主要内容是反比例函数,回顾一下之前学过的正比例函数。
请同学们简单回答一下什么是正比例函数,它的图像特征是什么。
2. 概念认识引入反比例函数的定义和性质,讲解反比例函数的概念和性质。
并通过学生自主练习来巩固概念。
3. 图像探究通过计算几个反比例函数的图像,来观察图像的特征。
并通过课堂小组讨论,学生们分别汇报各自的观察结果。
最终得到反比例函数图像的特征是:经过点(1, a)并且与x轴垂直。
4. 例题演练通过实例演示,来帮助学生更好的掌握反比例函数的解法。
要求学生先自主思考解题思路,然后再与同桌讨论交流。
最后由教师进行总结和点评。
5. 创新实践让学生通过实际问题来运用反比例函数进行解题,如水桶漏水、利润分配、比例缩小等问题。
鼓励学生思考不同的解法,并形成小组或个人汇报解答思路和结果。
五、教学方法本课采用讲授、讨论、实践等方法。
通过学生自主练习、案例演示和小组讨论等活动,帮助学生更好地掌握反比例函数的概念和解法。
六、教学评价本课教学重心是帮助学生理解反比例函数的概念和性质,并能够运用反比例函数解决实际问题。
针对不同难度的反比例函数题目,采取引导和提示的方式,帮助每个学生充分思考并解答问题。
通过不同方式的评价,如课堂监测、作业和小组汇报等,来检验课程效果。
七、拓展延伸让学生在家通过复习反比例函数的相关知识并完成一定数量的习题,巩固课堂所学知识。
同时,鼓励学生通过网络教育资源自学更多知识内容,加深对反比例函数的认识。
第六章反比例函数1反比例函数教学目标1.理解反比例函数的概念;2.能判断一个函数是否为反比例函数;3.能根据实际问题中的条件确定反比例函数的表达式.教学重难点重点:理解反比例函数的概念;难点:领悟反比例函数的概念.教学过程旧知回顾1.回忆函数的定义;2.回忆一次函数与正比例函数的定义.导入新课1.反比例函数的定义思考:下列问题中,变量间的对应关系可以用怎样的函数关系表示?这些函数有什么共同特点?1、一铁路全程为1 463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.2、某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.3、已知某市的总面积约为1.68×104 km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.(教师组织学生讨论,提问学生,师生互动)学生讨论会发现:以上函数都具有y=kx的形式,其中k是非零常数.结论:反比例函数的定义教学反思一般地,如果两个变量x ,y 之间的对应关系可以表示成y =kx(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.表达式的三种形式: y =k x(k ≠0);xy =k (k ≠0);y =kx -1(k ≠0). 例题:下列函数中哪些是反比例函数?哪些是一次函数?(1)y = 8x -1; (2)y = x +42; (3)xy 54=;(4)x y 23=; (5)x y 1-=; (6)xy 4.0=;(7)x y 5=; (8)2xy =; (9)xy = -2; (10)-2xy = 7; (11)y = -6x +1. (教师引导,学生分析)学生通过听课已经对反比例函数有了一定的认识,让学生独立思考,通过回答规范他们对反比例函数及一次函数的认识.解:反比例函数:(3)(5)(6)(7)(9)(10); 一次函数:(1)(2)(4)(8)(11). 2.确定反比例函数的表达式例题:已知y 是x 的反比例函数,且当x =2时,y =6.(1)写出y 关于x 的函数表达式; (2)当x =4时,求y 的值. (教师引导,学生分析)因为y 是x 的反比例函数,所以可设y =kx ,再把x =2和y =6代入上式就可求出常数k 的值.——待定系数法解:(1)设y =k x ,因为x =2时,y =6,所以有6=2k , 教学反思解得k =12,因此y =12x. (2) 把x =4代入y =12x ,得y =124=3. 3.实际问题中的反比例函数例题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)一个游泳池的容积为2 000 m 3,注满游泳池所用的时间t 随注水速度v 的变化而变化;(2)某立方体的体积为1 000 cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100 N ,物体对地面的压强p 随物体与地面的接触面积S 的变化而变化.(教师引导,学生分析)先找实际问题中的等量关系,根据等量关系写出关系式,再变形.解:(1)t =2000v ;(2)h =1000S ; (3)p =100S.课堂练习1.下列函数表达式中,y 是x 的反比例函数的是 ( )A.y =x2B.y =-32xC.y =1x+1D.y =1x 22.反比例函数y =kx (k ≠0),若x =√3时,y =4,则k 等于 ( ) A.√3 B.4C.4√3D.√33.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ) A.4 B.-4 C.3 D.-34.当a = 时,函数y =(a +2)x a 2-5是反比例函数.5.若函数y =11m x (m 是常数)是反比例函数,则m = ,表达式为y= .6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别. (1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为______,是______函数.教学反思(2)某种灯泡的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为______,是______函数.(3)设三角形的底边、底边上的高、面积分别为a,h,S.当a=10时,S与h的关系式为______,是______函数;当S=18时,a与h的关系式为______,是______函数.(4)某工人承包运输粮食的总数是w吨,每天运输x吨,共运了y天,则y与x 的关系式为________,是______函数.参考答案1.B2.C3.A4.25.21 x6.解:(1)y=8000x反比例(2)y=1000x反比例(3)S=5h正比例a=36h反比例(4)y=wx反比例课堂小结1、反比例函数的定义一般地,如果两个变量x,y之间可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数.2、表达式的三种形式:y=kx(k≠0);xy=k(k≠0);y=kx-1(k≠0).3、确定函数表达式待定系数法教学反思布置作业完成教材习题6.1板书设计第六章反比例函数1反比例函数。
反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
北师大版数学九年级上册《反比例函数》教案一、教学目标1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解;3.能够应用反比例函数解决实际问题;4.发展学生的数学思维能力和解决问题的能力。
二、教学重点1.理解反比例函数的定义及其特点;2.能够通过表格、图像、实例等形式表示反比例函数,并形象理解。
三、教学难点1.能够应用反比例函数解决实际问题;2.发展学生的数学思维能力和解决问题的能力。
四、教学内容及教学方法教学内容1.反比例函数的定义及其特点;2.反比例函数的表格、图像、实例;3.反比例函数的应用。
教学方法1.归纳法和演绎法相结合;2.以实例为基础进行教学;3.组织学生进行小组讨论;4.利用多种教学手段,如讲解、展示、讨论等。
五、教学步骤第一步:引入介绍本课的主题:反比例函数,通过捕捉学生的注意力引入本课。
第二步:概念的讲解1.反比例函数的定义;2.反比例函数的图像及其特点;3.反比例函数的一般式及其性质。
第三步:小组讨论案例提供 5~10 个实际问题,组织学生分组讨论如何用反比例函数来解决这些问题。
第四步:作业辅导老师根据本课教学内容布置作业,并对学生作业进行辅导。
六、教学评价1.学生通过小组讨论和作业完成任务,能够较好的理解反比例函数的定义、特点和应用;2.学生在课堂上和小组中能积极表达,互相交流,并进行了有效合作;3.学生通过课堂练习和作业完成,能够掌握所学知识,较好的掌握了课堂所学内容。
七、教学反思通过本课的教学,学生在课堂上和小组中都能积极参与讨论,并且能够掌握反比例函数的基本概念和应用,达到了本课的预期教学目标。
同时也发现了一些问题:部分学生对于难度较大的问题理解困难,需要老师进一步解释;有些学生的知识储备较少,需要老师根据学生的情况进行差异化教学。
在以后的教学中,需要更注重学生的个性化需求,实现更有效的教学效果。
《反比例函数》教学设计《反比例函数》教学设计(精选7篇)作为一名无私奉献的老师,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
我们应该怎么写教学设计呢?下面是店铺为大家整理的《反比例函数》教学设计(精选7篇),欢迎大家借鉴与参考,希望对大家有所帮助。
《反比例函数》教学设计篇1教学目标:1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;4、体会数学从实践中来又到实际中去的研究、应用过程;5、培养学生的观察能力,及数学地发现问题,解决问题的能力.教学重点:结合图象分析总结出反比例函数的性质;教学难点:描点画出反比例函数的图象教学用具:直尺教学方法:小组合作、探究式教学过程:1、从实际引出反比例函数的概念我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例即vt=S(S是常数);当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数) 从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:(S是常数)(S是常数)一般地,函数 (k是常数 )叫做反比例函数.如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供2、列表、描点画出反比例函数的图象例1、画出反比例函数与的图象解:列表说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.3、观察图象,归纳、总结出反比例函数的性质前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)(1) 的图象在第一、三象限.可以扩展到k 0时的情形,即k0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.的讨论与此类似.抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.(2)函数的图象,在每一个象限内,y随x的增大而减小;从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k0时,函数的图象,在每一个象限内,y随x的增大而减小.同样可以推出的图象的性质.(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x 取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.函数的图象性质的讨论与次类似.4、小结:本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.《反比例函数》教学设计篇2教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生:①能否积极主动地合作交流.②能否用语言说明两个变量间的关系.③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1);(2);(3)其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数.二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.师生行为学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1);(2);(3)概念:如果两个变量x,y之间的关系可以表示成的`形式,那么y 是x的反比例函数,反比例函数的自变量x不能为零.活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值.师生行为:学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动.分析及解答:1.只有xy=123是反比例函数.2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.解:(1)设,因为x=2时,y=6,所以有解得k=12三、巩固提高活动51.已知y是x的反比例函数,并且当x=3时,y=?8.(1)写出y与x之间的函数关系式.(2)求y=2时x的值.2.y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.《反比例函数》教学设计篇3[教学目标]1.回顾反比例函数的概念.通过实际问题,进一步感受用反比例函数解决实际问题的过程与方法,体会反比例函数是分析、解决实际问题的一种有效的模型.2.归纳总结反比例函数的图象和性质,进一步体会形数结合的数学思想方法.[教学过程]1.回顾、梳理本章的知识:如同已经学过的有关方程、函数的内容一样,本章内容分为3块:(1)从生活到数学:从问题到反比例函数,即建构实际问题的数学模型;(2)数学研究:反比例函数的图象与性质;(3)用数学解决问题:反比例函数的应用.2.可以设计一组问题,重点归纳、整理反比例函数的图象与性质,进一步感受形数结合的数学思想方法.例如:(1)由形到数——用待定系数法求反比例函数的关系式;由图象的位置或图象的部分确定函数的特征;(2)由数到形――根据反比例函数关系式或反比例函数的性质,确定图形的位置、趋势等;(3)形数结合——函数的图象与性质的综合应用2例如:如图,点P是反比例函数y?上的一点,PD垂直x轴于点D,则△xPOD的面积为________3.设计一个实际问题,让学生经历“问题情境一建立模型一求解一解释与应用”的基本过程.例如:为了预防“非典”,某学校对教室采用药薰法进行消毒.已知药物燃烧时.室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例(如图).现测得药物8min燃毕,此时室内空气中每立方米含药量为6mg。
反比例函数九年级数学教案教学目标:1. 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点. 教学重点:反比例函数的概念教学难点:例1涉及较多的《科学》学科的知识,学生理解问题时有一定的难度。
教学过程:一、 创设情景 探究问题(3)速度v 是时间t 的函数吗?为什么?[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s =vt ,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述. 3)结合函数的概念,特别强调唯一性,引导讨论问题(3). 情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m 2的长方形的长a (m )随宽b (m )的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y (万元)随还款年限x (年)的变化而变化;(3)游泳池的容积为5000m 3,向池内注水,注满水所需时间t (h )随注水速度v (m 3/h )的变化而变化;(4)实数m 与n 的积为-200,m 随n 的变化而变化. 问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?随着速度的变化,全程所用时间发生怎样的变化? 情境1: 当路程一定时,速度与时间成什么关系?(s =vt ) 当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy =m (m 为一个定值),则x 与y 成反比例。
这一情境为后面学习反比例函数概念作铺垫。
情境2:汽车从南京出发开往上海(全程约300km ),全程所用时间t (h )随速度v (km/h )的变化而变化. 问题:(1)你能用含有v 的代数式表示t 吗? (2)利用(1(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数.[说明]这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x 位于分母,且其次数是1.(2)常量k ≠0.(3)自变量x 的取值范围是x ≠0的一切实数.(4)函数值y 的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y =kx -1(k 为常数,k ≠0)的形式,并结合旧知验证其正确性.二、例题教学例1:下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)y =x 15 ;(2)y =2x -1 ;(3)y =- 3x ;(4)y =1x -3;(5)y = 2+1x ;(6)y =x 3 +2;(7)y =-12x .[说明]这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成y =kx 或y =kx +b 的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x -1,不是x ,(2)式y 与x -1成反比例,它不是y 与x 的反比例函数. 对于(4),等号右边不能化成 k x 的形式,它只能转化为1-3x x 的形式,此时分子已不是常数,所以(4)不是反比例函数. 而(7)中右边分母为2x ,看上去和(2)类似,但它可以化成- 12x ,即k =-12 ,所以(7)是反比例函数. 通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.例2:在函数y =2x -1,y =2x+1 ,y =x -1,y =12x中,y 是x 的反比例函数的有 个.[说明]这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y =kx -1的形式. 还有y =2x -1通分为y =2-x x ,y 、x 都是变量,分子不是常量,故不是反比例函数,但变为y +1=2x可说成(y +1)与x 成反比例.例3:若y 与x 成反比例,且x =-3时,y =7,则y 与x 的函数关系式为 .[说明]这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k 的值.(1)底边为5cm 的三角形的面积y (cm 2)随底边上的高x (cm )的变化而变化;(2)某村有耕地面积200ha ,人均占有耕地面积y (ha )随人口数量x (人)的变化而变化;(3)一个物体重120N ,物体对地面的压强p (N/m 2)随该物体与地面的接触面积S (m 2)的变化而变化.反比例函数的自变量x 的取值范围是不等于0的一切实数.2、下列哪些关系式中的y 是x 的反比例函数?如果是,比例系数是多少? (1)y =23 x ; (2)y =23x ; (3)xy +2=0;(4)xy =0; (5)x =23y .3、已知函数y =(m +1)x22-m 是反比例函数,则m 的值为 .第3题要引导学生从反比例函数的变式y =kx -1入手,注意隐含条件k ≠0,求出m 值. 四、课堂小结这节课你学到了什么?还有那些困惑? 五、布置作业: 作业本(1)第一页课题:1.1反比例函数(2)教学目标:1.会用待定系数法求反比例函数的解析式.2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.重点: 用待定系数法求反比例函数的解析式.难点:例3要用科学知识,又要用不等式的知识,学生不易理解. 教学过程: 一. 复习1、反比例函数的定义:判断下列说法是否正确(对”√”,错”×”)2、思考:如何确定反比例函数的解析式?(1)已知y 是x 的反比例函数,比例系数是3,则函数解析式是_______(2)当m 为何值时,函数 是反比例函数,并求出其函数解析式. 关键是确定比例系数! 二.新课1. 例2:已知变量y 与x 成反比例,且当x=2时y=9(1)写出y 与x 之间的函数解析式和自变量的取值范围。
小结:要确定一个反比例函数xky =的解析式,只需求出比例系数k 。
如果已知一对自变量与函数的对应[说明]引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数..)/()(,1200)6(.)5(.)4(.)3(.)2(.)()(,20)1(22的反比例函数是每日铺轨量则铺轨天数计划修建铁路例定时,商和除数成反比当被除数(不为零)一的反比例函数是为常量时,,当其体积,高为方形的边长为一个正四棱柱的底面正的反比例函数是为常量时,,当,周长为,宽为矩形的长为成正比例与中,圆的面积公式的反比例函数是变量,变量和相邻的两条边长分别为一矩形的面积为d km x d y km x y V y x b a C C b a r s r s x y cm y cm x cm π=224-=m x y值,就可以先求出比例系数,然后写出所要求的反比例函数。
2.练习:已知y 是关于x 的反比例函数,当x=43-时,y=2,求这个函数的解析式和自变量的取值范围。
3.说一说它们的求法:(1)已知变量y 与x-5成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式. (2)已知变量y-1与x 成反比例,且当x=2时 y=9,写出y 与x 之间的函数解析式.4. 例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。
(1)已知一个汽车前灯的电阻为30 Ω,通过的电流为0.40A ,求I 关于R 的函数解析式,并说明比例系数的实际意义。
(2)如果接上新灯泡的电阻大于30 Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化? 在例3的教学中可作如下启发:(1)电流、电阻、电压之间有何关系?(2)在电压U 保持不变的前提下,电流强度I 与电阻R 成哪种函数关系? (3)前灯的亮度取决于哪个变量的大小?如何决定? 先让学生尝试练习,后师生一起点评。
三.巩固练习:1.当质量一定时,二氧化碳的体积V 与密度p 成反比例。
且V=5m3时,p=1.98kg /m3 (1)求p 与V 的函数关系式,并指出自变量的取值范围。
(2)求V=9m3时,二氧化碳的密度。
四.拓展:1.已知y 与z 成正比例,z 与x 成反比例,当x=-4时,z=3,y=-4.求: (1)Y 关于x 的函数解析式; (2)当z=-1时,x,y 的值.2.五.交流反思求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的RUI =由欧姆定律得到。
六、布置作业:作业本(2)1.1反比例函数课题:1.2反比例函数的图像和性质(1) [教学目标]1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 [教学重点和难点]本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点 [教学过程] 1、情境创设之间的函数关系。
与,求值都等于的时,与成反比例,并且与成正例,与,已知x y y x x x y x y y y y 10322121==+=可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。
转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢? 2、探索活动探索活动1 反比例函数xy 6=的图象. 由于反比例函数xy 6=的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等); (2)方法与步骤——利用描点作图;列表:取自变量x 的哪些值? ——x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。