一年数学期中考试试题
- 格式:doc
- 大小:172.50 KB
- 文档页数:4
一年级数学期中考试试题一、算一算(共 30 分)1、直接写得数(20 分)2 +3 = 5 1 =4 + 1 = 6 3 =7 5 = 3 + 3 = 8 4 = 9 2 =5 + 2 = 1 +6 =7 0 = 4 2 =6 + 1 = 8 5 = 3 + 4 =7 7 =2 + 5 = 9 0 = 4 +3 = 8 6 =2、在括号里填上合适的数(10 分)()+ 5 = 8 9 ()= 6 () 3 = 42 +()= 7 8 ()= 2 ()+ 4 = 6() 1 = 7 5 +()= 9 3 +()= 8() 6 = 2二、填一填(共 35 分)1、数一数,写一写(5 分)()()()()()2、比一比(8 分)(1)在多的后面画“√”。
()()(2)在重的下面画“√”。
()()(3)在最长的后面画“√”。
()()()(4)在最高的下面画“√”。
()()()3、分一分(8 分)(1)把下面的图形分成两类,可以怎么分?()()()()()()()(2)把下面的动物分成两组,可以怎么分?()()()()()()4、填一填(14 分)(1)7 前面一个数是(),后面一个数是()。
(2)和 5 相邻的两个数是()和()。
(3)在 3、6、0、8 中,最大的数是(),最小的数是()。
(4)比 4 多 2 的数是(),比 7 少 3 的数是()。
(5)9 可以分成()和(),还可以分成()和()。
三、看图列式(共 20 分)1、(5 分)□○□ =□2、(5 分)□○□ =□3、(5 分)□○□○□ =□4、(5 分)□○□ =□ □○□ =□四、解决问题(共 15 分)1、小明家有 5 只鸡,3 只鸭,鸡和鸭一共有几只?(5 分)□○□ =□(只)2、树上有 8 只鸟,飞走了 2 只,还剩几只鸟?(5 分)□○□=□(只)3、妈妈买了 7 个苹果,小红吃了 2 个,还剩几个苹果?(5 分)□○□ =□(个)。
福建省厦门市2022—2023学年度第二学期期中考试高一年数学试卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数22iz i +=-,则复数z 的模为().A.2B.5C.1D.2【答案】C 【解析】【分析】根据复数除法运算,先化简z ;再由复数模的计算公式,即可得出结果.【详解】因为复数()222342555i i z ii ++===+-,所以91612525z =+=.故选:C .2.已知平面向量()1,a m = ,(),2b n = ,()3,6c = ,若a c ∥ ,b c ⊥,则实数m 与n 的和为()A.6B.6- C.2D.2-【答案】D 【解析】【分析】根据a c ∥ 、b c ⊥分别求出m 和n 即可.【详解】a ∥c,1236mm ∴=⇒=;b c ⊥ ,0b c ∴⋅=,31204n n ∴+=⇒=-;242m n ∴+=-=-.故选:D .3.已知圆锥PO ,其轴截面(过圆锥旋转轴的截面)是底边长为6m ,顶角为2π3的等腰三角形,该圆锥的侧面积为()A.26πmB.263πm C.233πm D.2123πm 【答案】B 【解析】【分析】运用圆锥侧面积公式计算即可.【详解】如图所示,设圆锥的半径为r ,母线为l ,由题意知,132r OB AB ===,在Rt POB △中,112ππ2233BPO BPA ∠=∠=⨯=,所以323π3sin 32OB l BP ====,所以圆锥侧面积为2ππ32363πm rl =⨯⨯=.故选:B.4.中国古代数学专著《九章算术》的第一章“方田”中载有“半周半径相乘得积步”,其大意为:圆的半周长乘以其半径等于圆面积.南北朝时期杰出的数学家祖冲之曾用圆内接正多边形的面积“替代”圆的面积,并通过增加圆内接正多边形的边数n 使得正多边形的面积更接近圆的面积,从而更为“精确”地估计圆周率π.据此,当n 足够大时,可以得到π与n 的关系为()A.360πsin 2n n︒≈B.180πsinn n ︒≈ C.360π21cos n n ︒⎛⎫≈- ⎪⎝⎭ D.180π1cos 2n n︒≈-【答案】A 【解析】【分析】设圆的半径为r ,由题意可得221360πsin2r n r n ︒≈⋅⋅⋅,化简即可得出答案.【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形,由内接正n 边形的面积无限接近圆的面即可得:221360πsin2r n r n︒≈⋅⋅⋅,解得:360πsin 2n n ︒≈.故选:A .5.在ABC 中,60A ∠=︒,1b =,ABC 的面积为3,则sin aA为().A.8381B.2393C.2633D.27【答案】B 【解析】【分析】由已知条件,先根据三角形面积公式求出c 的值,然后利用余弦定理求出a 的值,即可得sin aA的值.【详解】解:在ABC 中,因为60A ∠=︒,1b =,ABC 的面积为3,所以113sin 12223ABC bc A S c ==⨯⨯⨯= ,所以4c =,因为2222212cos 14214132a b c bc A =+-=+-⨯⨯⨯=,所以13a =,所以13239sin 332a A ==.故选:B.6.已知m ,n 为两条不同的直线,,αβ为两个不同的平面,则下列命题正确的是()A.若//,//,//m n αβαβ,则//m nB.若//,//,m m n αβαβ⋂=,则//m nC.若//,//αβn n ,则//αβD.若//,m n n α⊂,则//m α【答案】B 【解析】【分析】A :结合两直线的位置关系可判断//m n 或,m n 异面;B :结合线面平行的性质可判断//m n ;C :结合线面的位置关系可判断//αβ或,αβ相交;D :结合线面的位置关系可判断//m α或m α⊂.【详解】A :若//,//,//m n αβαβ,则//m n 或,m n 异面,故A 错误;B :因为//m α,所以在平面α内存在不同于n 的直线l ,使得//l m ,则l //β,从而//l n ,故//m n ,故B 正确;C :若//,//αβn n ,则//αβ或,αβ相交,故C 错误;D :若//,m n n α⊂,则//m α或m α⊂,故D 错误.故选:B7.如图所示,在直三棱柱111ABC A B C -中,棱柱的侧面均为矩形,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为()A.3B.2C.5D.7【答案】D 【解析】【分析】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',再根据两点之间线段最短,结合勾股定理余弦定理等求解AC '即可.【详解】连接1BC ,得11A BC V ,以1A B 所在直线为轴,将11A BC V 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则有1C AP PC AP PC A '++'=≥,如图,当,,A P C '三点共线时,则AC '即为1AP PC +的最小值.在三角形ABC 中,3AB BC ==,1cos 3ABC ∠=,由余弦定理得:2212cos 332323AC AB BC AB BC B =+-⋅=+-⨯⨯=,所以112A C =,即12A C '=,在三角形1A AB 中,11AA =,3AB =,由勾股定理可得:2211132A B AA AB =+=+=,且160AA B ∠=︒.同理可求:12C B =,因为11112A B BC A C ===,所以11A BC V 为等边三角形,所以1160BA C ∠=︒,所以在三角形1AAC '中,111120AA C AA B BA C ''∠=∠+∠=︒,111,2AA A C '==,由余弦定理得:11421272AC ⎛⎫'=+-⨯⨯⨯-= ⎪⎝⎭.故选:D.8.已知ABC 中,π3A ∠=,D ,E 是线段BC 上的两点,满足BD DC =,BAE CAE ∠=∠,192AD =,635AE =,则BC 长度为()A.19 B.23 C.7 D.6319-【答案】C 【解析】【分析】由BAE CAE ABCS S S +=△△△可得出56b c bc +=,由1()2AD AB AC =+ 两边平方可求得,,bc b c +然后在ABC 中利用余弦定理可求得答案.【详解】如图,记,,BC a AC b AB c ===,BAE CAE ABC S S S += △△△,π6BAE CAE ∠=∠=,635AE =,1631631sin sin sin 25625623πππc b bc ∴⨯⨯+⨯⨯=,333()104b c bc ∴+=,即56b c bc +=,1()2AD AB AC =+ ,192AD =,()()2222211244AD AB AB AC AC b c bc ∴=+⋅+=++ 2211125119()()4443644b c bc bc bc =+-=⨯-=,即225()366840bc bc --=,(6)(25114)0bc bc -+=,6,5,bc b c ∴=∴+=在ABC 中,2222222cos()32513π87a b c bc b c bc b c bc =+-=+-=+-=-=,7BC a ∴==.故选:C.二、选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知圆台的上底半径为1,下底半径为3,球O 与圆台的两个底面和侧面都相切,则()A.圆台的母线长为4B.圆台的高为4C.圆台的表面积为26πD.球O 的表面积为12π【答案】ACD 【解析】【分析】作出圆台的轴截面,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,连接,,OD OE OA ,利用平面几何知识得到2123R r r ==,即可逐项计算求解.【详解】设梯形ABCD 为圆台的轴截面,则内切圆O 为圆台内切球的大圆,如图,设圆台上、下底面圆心分别为12,O O ,半径分别为12,r r ,则12,,O O O 共线,且1212,O O AB O O CD ⊥⊥,连接,,OD OE OA ,则,OD OA 分别平分,DAB ADC ∠∠,故12,r r E AE D ==,,,22ππODA DOA OE D OA A D +∠=∠=⊥∠,故2E O A E DE =⋅,即2123R r r ==,解得3R =,母线长为124r r +=,故A 正确;圆台的高为223R =,故B 错误;圆台的表面积为22π1π3π(13)426π⨯+⨯+⨯+⨯=,故C 正确;球O 的表面积为24π12πS R ==,故D 正确.故选:ACD.10.已知1z 与2z 是共轭虚数,则()A.2212z z < B.2122z z z =C.12R z z +∈ D.12R z z ∈【答案】BC 【解析】【分析】设出复数12,z z ,根据复数的运算,对每个选项进行逐一分析,即可判断.【详解】由题意,复数1z 与2z 是共轭虚数,设1i z a b =+、2i z a b =-,R a b ∈、且0b ≠,对于A 项,22212i z a b ab =-+,22222i z a b ab =--,当0a ≠时,由于复数不能比较大小,故A 项不成立;对于B 项,因为2212z z a b ⋅=+,2222||z a b =+,所以2122||z z z ⋅=,故B 项正确;对于C 项,因为122R z z a +=∈,所以C 选项正确;对于D 项,由222122222()2()(i i i i)i i z a b a b a b abz a b a b a b a b a b ++-===+--+++不一定是实数,故D 项不成立.故选:BC.11.对于ABC ,有如下命题,其中正确的有()A.若22sin sin A B =,则ABC 为等腰三角形B.若sin cos A B =,则ABC 为直角三角形C.若222sin sin cos 1A B C ++<,则ABC 为钝角三角形D.若3,1,30AB AC B === ,则ABC 的面积为34或32【答案】ACD 【解析】【分析】A.根据条件得到,A B 的关系,由此进行判断;B.利用诱导公式直接分析得到,A B 的关系并判断;C.利用正弦定理得到222,,a b c 的关系,结合余弦定理进行判断;D.先利用正弦定理计算出sin C 的值,由此可求,C A 的值,结合三角形面积公式进行计算并判断.【详解】对于A :22sin sin ,A B A B ABC =∴=⇒ 是等腰三角形,A 正确;对于B :sin cos ,2A B A B π=∴-=或,2A B ABC π+=∴ 不一定是直角三角形,B 错误;对于C :2222222222sin sin 1cos ,sin ,cos 02A B C C a a abb bc C c ++<--==∴+∴<< ,ABC ∴ 为钝角三角形,C 正确;对于D :由正弦定理,得sin 3sin .2AB B C AC ⋅==而,60AB AC C >∴= 或120,C = 90A ∴= 或30,A =当90,60A C =︒=︒时,131322ABCS =⨯⨯=,当30,120A C =︒=︒时,1311sin12024ABC S =⨯⨯⨯︒=,32ABC S ∴=或3,4D 正确.故选:ACD.12.“阿基米德多面体”也称为半正多面体(semi -regularsolid ),是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种半正多面体.已知2AB =,则关于如图半正多面体的下列说法中,正确的有()A.该半正多面体的体积为203B.该半正多面体过,,A B C 三点的截面面积为332C.该半正多面体外接球的表面积为8πD.该半正多面体的顶点数V 、面数F 、棱数E 满足关系式2V F E +-=【答案】ACD 【解析】【分析】根据几何体的构成可判断A ,由截面为正六边形可求面积判断B ,根据外接球为正四棱柱可判断C ,根据顶点,面数,棱数判断D.【详解】如图,该半正多面体,是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的.对于A ,因为由正方体沿各棱中点截去8个三棱锥所得到的,所以该几何体的体积为:11202228111323V =⨯⨯-⨯⨯⨯⨯⨯=,故正确;对于B ,过,,A B C 三点的截面为正六边形ABCFED ,所以()2362334S =⨯⨯=,故错误;对于C ,根据该几何体的对称性可知,该几何体的外接球即为底面棱长为2,侧棱长为2的正四棱柱的外接球,所以该半正多面体外接球的表面积2244(2)8S R πππ==⨯=,故正确;对于D ,几何体顶点数为12,有14个面,24条棱,满足1214242+-=,故正确.故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.i 是虚数单位,已知22i ωω-=-,写出一个满足条件的复数ω.______.【答案】1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可)【解析】【分析】运用复数的模的运算公式计算即可.【详解】设i a b ω=+,(,R a b ∈),则22|2||(2)i |(2)a b a b ω-=-+=-+,22|2i ||(2)i |(2)a b a b ω-=+-=+-,因为|2||2i |ωω-=-,所以2222(2)(2)a b a b -+=+-,解得:a b =,所以i a a ω=+,(R a ∈)所以可以取1i ω=+.故答案为:1i ω=+(答案不唯一,满足i a a ω=+(R a ∈)均可).14.在矩形ABCD 中,已知2AB =,1BC =,点P 是对角线AC 上一动点,则AP BP ⋅的最小值为___________.【答案】45-##0.8-.【解析】【分析】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,利用平面向量的坐标运算求出AP BP ⋅,进而结合二次函数的性质即可求出结果.【详解】以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系,又因为2AB =,1BC =,所以()()()()0,0,2,0,2,1,0,1,A B C D 则直线AC 的方程为12y x =,所以设()2,P m m ,且01m ≤≤,而()()2,,22,AP m m BP m m ==-,所以()2222AP BP m m m ⋅=-+ 254m m=-结合二次函数的性质可知,当25m =时,AP BP ⋅ 有最小值,且最小值为222454555⎛⎫⨯-⨯=- ⎪⎝⎭,故答案为:45-.15.太湖中有一小岛C ,沿太湖有一条正南方向的公路,一辆汽车在公路A 处测得小岛在公路的南偏西15°的方向上,汽车行驶1km 到达B 处后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________km.【答案】36【解析】【详解】如图所示,过C 作CD ⊥AB ,垂足为D ,∠A=15°,∠CBD=75°,AB=1km ,△ABC 中,BC=00sin15sin 60,△CBD 中,CD=BCcos15°=001sin 302sin 60=36km .故填36.16.如图,平面四边形ABCD 中,其中3os 4c DAB ∠=,BAC DAC ∠=∠,AD AB <,且5AB =,14AC BD ==,若(),R AC AB AD λμλμ=+∈,则λμ+=______.【答案】75##1.4【解析】【分析】运用余弦定理求得AD 的值,在AB 上取点E ,使得2AE AD ==,结合角平分线性质可得AF D E ⊥,再运用向量加法可求得结果.【详解】在ABD △中,由余弦定理得:2222cos BD AB AD AB AD BAD =+-⋅⋅∠,即:231425254AD AD =+-⨯⨯,解得:2AD =或112AD =,又因为5AD AB <=,所以2AD =.在AB 上取点E ,使得2AE =,连接DE ,交AC 于点F ,如图所示,又因为AC 为DAB ∠的角平分线,所以AF D E ⊥,F 为DE 的中点,在ADE V 中,由余弦定理得:22232222224DE =+-⨯⨯⨯=,所以2211141()42222AF AE DE AC =-=-==,所以225AC AF AE AD AB AD ==+=+,所以2=5λ,1μ=,所以75λμ+=.故答案为:75.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数z 满足2z z ⋅=,且z 的虚部为-1,z 在复平面内所对应的点在第四象限.(1)求z ;(2)若z ,2z 在复平面上对应的点分别为A ,B ,O 为坐标原点,求∠OAB .【答案】(1)1i z =-(2)π2OAB ∠=【解析】【分析】(1)运用复数几何意义设出z ,再结合共轭复数定义写出z ,再运用复数乘法运算求得结果.(2)运用复数几何意义、两点间距离公式及勾股定理可求得结果.【小问1详解】由题意知,设i z a =-(0a >),则i z a =+,所以222i 12z z a a ⋅=-=+=,解得:1a =,所以1i z =-.【小问2详解】由(1)知,1i z =-,所以22(1i)2i z =-=-,所以(1,1)A -,(0,2)B -,如图所示,所以(1,1)AO =- ,(1,1)AB =--,22||(1)12AO =-+= ,22||(1)(1)2AB =-+-= ,所以11cos 02||||AO AB OAB AO AB ⋅-∠===.所以π2OAB ∠=.18.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB PC 、的三等分点(M 靠近B ,N 靠近C );(1)求证://MN 平面PAD .(2)在PB 上确定一点Q ,使平面//MNQ 平面PAD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)过点N 作//NE CD ,交PD 于点E ,连接AE ,证得证得四边形AMNE 为平行四边形,得到//MN AE ,结合线面平行的判定定理,即可求解;(2)取PB 取一点Q ,使得13BQ BP =,证得//MQ PA ,得到//MQ 平面PAD ,结合(1)中//MN 平面PAD ,利用面面平行的判定定理,证得平面//MNQ 平面PAD .【小问1详解】证明:过点N 作//NE CD ,交PD 于点E ,连接AE ,因为N 为PC 的三等分点,可得23NE CD =,又因为M 为AB 的三等分点,可得23AM AB =,因为//AB CD 且AB CD =,所以//AM NE 且AM NE =,所以四边形AMNE 为平行四边形,所以//MN AE ,又由MN ⊄平面PAD ,AE ⊂平面PAD ,所以//MN 平面PAD .【小问2详解】证明:取PB 取一点Q ,使得13BQ BP =,即点Q 为PB 上靠近点B 的三等点,在PAB 中,因为,M Q 分别为,AB PB 的三等分点,可得MB BQAB BP=,所以//MQ PA ,因为MQ ⊄平面PAD ,PA ⊂平面PAD ,所以//MQ 平面PAD ;又由(1)知//MN 平面PAD ,且MN MQ M ⋂=,,MN MQ ⊂平面MNQ ,所以平面//MNQ 平面PAD ,即当点Q 为PB 上靠近点B 的三等点时,能使得平面//MNQ 平面PAD .19.如图,在ABC 中,π3BAC ∠=,D 为AB 中点,P 为CD 上一点,且满足13AP t AC AB =+ ,ABC 的面积为332,(1)求t 的值;(2)求AP的最小值.【答案】(1)13t =(2)2【解析】【分析】(1)利用,,C P D 三点共线,可设DP mDC =,推出1(1)2AP mAC m AB =+- ,结合13AP t AC AB =+ ,即可求得t 的值;(2)利用(1)的结论可得2221(2)9A AC AB A PC AB ++=⋅ ,利用三角形面积得出||||6AC AB ⋅=,结合基本不等式即可求得答案.【小问1详解】在ABC 中,D 为AB 中点,则,,C P D 三点共线,设,()DP mDC AP AD m AC AD =∴-=- ,故1(1)(1)2AP mAC m AD mAC m AB =+-=+- ,又13AP t AC AB =+ ,故11(1)23m t m =⎧⎪⎨-=⎪⎩,解得13m t ==,即13t =.【小问2详解】由(1)知1133AP AC AB =+,所以2222211()(2)1339AC AB AC AP AP AB AC AB +=+=+⋅=221(||||2||||cos )9AC AB AC AB BAC =++⋅∠1(2||||2||||cos )9AC AB AC AB BAC ≥⋅+⋅∠ ,当且仅当||||AC AB = 时取等号,又332ABC S =△,则133||||sin 22AC AB BAC ⋅∠= ,即1π33||||sin ,||||6232AC AB AC AB ⋅=∴⋅= ,故21π(2626c 2os )2,93AP AP ≥⨯+⨯=≥∴ ,即AP 的最小值为2,当且仅当||||6AC AB ==时取等号.20.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅= ,求四边形ABCD 面积的最大值.【答案】(1)π6;(2)312+.【解析】【分析】(1)根据正弦定理以及两角和的正弦公式化简,即可得出3tan 3C =,进而根据角的范围得出答案;(2)解法一:由已知可推出BC CD ⊥,然后根据正弦定理可求出22R =,进而求出2BD =,3AD =.设BC x =,CD y =,表示出四边形的面积,根据基本不等式即可得出答案;解法二:根据投影向量,推出BC CD ⊥,然后同解法一求得3AD =.设CBD θ∠=,表示出四边形的面积,根据θ的范围,即可得出答案;解法三:同解法一求得3AD =,设点C 到BD 的距离为h ,表示出四边形的面积,即可推出答案;解法四:建系,由已知写出点的坐标,结合已知推得BD 是O 的直径,然后表示出四边形的面积,即可推出答案.【小问1详解】因为π2sin 6b c A ⎛⎫=+⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B A C ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 31222A C A C C A A ⎛⎫+=+ ⎪ ⎪⎝⎭,即sin cos si 30n sin A C C A -=,因为sin 0A ≠,故cos 3sin C C =,即3tan 3C =.又因为()0,πC ∈,所以π6C =.【小问2详解】解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△11312222AB BC xyAD CD =+⋅=⋅+2231312222x y +≤+⋅=+,当且仅当2x y ==时,等号成立.所以四边形ABCD 面积最大值为31 2+.解法二:如图1设ABC的外接圆的圆心为O,半径为R,BD在BA上的投影向量为BAλ,所以()2BA BD BA BA BAλλ⋅=⋅=.又22BA BD BA BA⋅==,所以1λ=,所以BD在BA上的投影向量为BA,所以DA BA⊥.故BD是O的直径,所以BC CD⊥.在ABC中,1c=,122πsin sin6cARBC=∠==,所以2BD=,在ABD△中,223AD BD AB=-=.设四边形ABCD的面积为S,CBDθ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cosCBθ=,2sinCDθ=,所以ABD CBDS S S=+△△1122BAD CDAB C=⋅⋅+3sin22θ=+,当π22θ=时,S最大,所以四边形ABCD 面积最大值为312+.解法三:如图1设ABC的外接圆的圆心为O,半径为R,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,223AD BD AB =-=.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=32h =+,当1h R ==时,S 最大,所以四边形ABCD 面积最大值为312+.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则13,22A ⎛⎫⎪⎪⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以13,22BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得113cos sin 1222ββ-++=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则1313sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为312+.21.如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=︒,2AB =,2PA PB ==.M 是棱PD 上的点,O 是棱AB 的中点,PO 为四棱锥P ABCD -的高,且四面体MPBC 的体积为36.(1)证明:PM MD =;(2)若过点C ,M 的平面α与BD 平行,且交PA 于点Q ,求多面体DMC AQB -体积.【答案】(1)证明见解析(2)32【解析】【分析】(1)由题意AD 平面PBC ,求得体积关系:12M PBC D PBC V V --=,即可得出答案;(2)建立空间直角坐标系,写出点的坐标,求出平面α的法向量为n,设()0,,AQ AP λλλ== ,由0n CQ ⋅= 得23λ=,求出ACQ 面积,平面ACQ 的法向量1n ,利用向量法求出M 到平面ACQ 的距离d ,进而求得M ACQ V -,Q ABC V -,M ADC V -,相加即可得出答案.【小问1详解】因为2PA PB ==,2AB =,AB 中点O ,所以PO AB ⊥,1PO =,1BO =.又因为ABCD 是菱形,60ABC ∠=︒,所以CO AB ⊥,3CO =.因为AD BC ∥,BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD 平面PBC ,所以11131233323A D PBC A PBC P ABC BC V V V P S O ---====⨯⨯⨯⨯=⋅△.因为3162M PBC D PBC V V --==,所以点M 到平面PBC 的距离是点D 到平面PBC 的距离的12,所以PM MD =.【小问2详解】因为PO ⊥平面ABCD ,,BO CO ⊂平面ABCD ,所以PO BO ⊥,PO CO ⊥,又BO CO ⊥,如图,以O 为坐标原点,OC ,OB ,OP的方向分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则()0,1,0A -,()0,1,0B ,()3,0,0C,()3,2,0D-,()0,0,1P ,所以31,1,22M ⎛⎫- ⎪ ⎪⎝⎭,()3,1,0AC =,()3,1,0BC =-,()3,3,0BD =-,()0,1,1AP = ,31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭.设平面α的法向量为(),,n x y z = ,则00n BD n CM ⎧⋅=⎪⎨⋅=⎪⎩ ,即33031022x y x y z ⎧-=⎪⎨--+=⎪⎩,取1y =,得()3,1,5=n .因为Q AP ∈,设()0,,AQ AP λλλ==,则()3,1,CQ AQ AC λλ=-=-- ,因为3150n CQ λλ⋅=-+-+= ,所以23λ=,23AQ AP =,所以123,,33CQ ⎛⎫=-- ⎪⎝⎭ ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,()22212423333CQ ⎛⎫⎛⎫=-+-+= ⎪ ⎪⎝⎭⎝⎭,222223332AQ ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,ACQ 中,2221cos 822422332242233AQC ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯∠==,0πAQC <∠<,2137sin 188AQC ⎛⎫∠=-= ⎪⎝⎭,1224237733831sin 22ACQ S AQ CQ AQC =⨯⨯⨯⨯⨯∠⨯==△,设平面ACQ 的法向量为()1111,,n x y z = ,则1100n AQ n CQ ⎧⋅=⎪⎨⋅=⎪⎩,即111112203323033y z y z x ⎧+=⎪⎪⎨⎪--+=⎪⎩.取11x =,得()11,3,3n =-.设M 到平面ACQ 的距离为d ,又31,1,22CM ⎛⎫=-- ⎪ ⎪⎝⎭ ,则()()()()1222131113322133217d CM n n ⎛⎫-⨯+-⨯-+⨯ ⎪===+⋅⎝⎭-+,11219733337M ACQ ACQ V S d -=⨯⨯⨯=⨯=△,∵23AQ AP = ,∴Q 到平面ABC 的距离为2233PO =,又12332ABC S =⨯⨯= ,∴1223339Q ABC ABC V S -=⨯⨯=△,∵PM MD =,∴M 到平面ADC 的距离为1122PO =,又3ADC ABC S S ==△△,∴113326M ADC ADC V S -=⨯⨯=△,多面体DMC AQB -体积为323339962M ACQ Q ABC M ADC V V V V ---=++=++=.22.如图1,某景区是一个以C为圆心,半径为3km 的圆形区域,道路1l ,2l 成60°角,且均和景区边界相切,现要修一条与景区相切的观光木栈道AB ,点A ,B 分别在1l 和2l 上,修建的木栈道AB 与道路1l ,2l 围成三角地块OAB .(注:圆的切线长性质:圆外一点引圆的两条切线长相等).(1)当OAB 为正三角形时求修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积;(2)若OAB 的面积103S =,求木栈道AB 长;(3)如图2,设CAB α∠=,①将木栈道AB 的长度表示为α的函数,并指定定义域;②求木栈道AB 的最小值.【答案】(1)2273km(2)3km 3(3)①33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭,②63km 【解析】【分析】(1)运用等面积法可求得等边三角形的边长,进而求得等边三角形的面积.(2)方法1:运用内切圆性质及三角形面积公式可求得结果.方法2:运用两个三角形面积公式可得a b c ++,ab 的值,再结合余弦定理可得22()3c a b ab =+-,联立可求得AB 的长.(3)①运用内切圆性质可得π3CBM α∠=-,进而运用直角三角形中的正切公式可表示出AB .②方法1:运用分离常数法、“1”的代换及基本不等式可求得结果.方法2:运用切化弦、和角公式、积化和差公式化简AB 表达式,再结合三角函数在区间上求最值即可.方法3:运用切化弦、和差角公式、二倍角公式、辅助角公式化简,再结合三角函数在区间上求最值即可.【小问1详解】如图所示,设三角地块OAB 面积为S ,等边△OAB 边长为a ,所以由等面积法得:211π33sin 223S a a =⨯⨯=,解得63a =,所以221π3sin (63)273234OAB S a ==⨯=△.故修建的木栈道AB 与道路1l ,2l 围成的三角地块OAB 面积为273平方千米.【小问2详解】方法1:设圆C 分别与OB 、OA 、AB 相切于点N 、E 、M ,如图所示,则3NC =,NC OB ⊥,1π26NOC BOA ∠=∠=,所以在Rt ONC △中,33πtan6NCON ==,所以33OE ON ==,设BM BN m ==,AE AM n ==,所以12(33)31032AOB S m n =⨯⨯++⨯=△,解得:33m n +=,即:33AB =.故木栈道AB 长为3km 3.方法2:设三角地块OAB 面积为S ,OB a =,OA b =,AB c =,3r =,由等面积法可得:()11sin 22S ab BOA r a b c =∠=++,即:()()13103103242433r a b c ab a b c ab =++=⇒=++=,所以3203a b c ++=①,40ab =②,在△OAB 中,由余弦定理得2222222cos 2cos60c a b ab BOA c a b ab ︒=+-∠⇒=+-222()3a b ab a b ab =+-=+-,即:22()3c a b ab =+-③,由①②③解得:33c =.故木栈道AB 长为3km 3.【小问3详解】如图所示,①由题意知,2π3OBA OAB ∠+∠=,由内切圆的性质可知,π3CBA CAB ∠+∠=,设直线AB 和圆C 相切点M ,CAB α∠=,则π3CBM α∠=-,因为00π003CAB CBA αα>⎧∠>⎧⎪⇒⎨⎨∠>->⎩⎪⎩,解得:π03α<<,又因为tan CM AM α=,πtan 3CMBM α⎛⎫-= ⎪⎝⎭,所以tan 3AM α=,πn 33ta BM α=⎛⎫- ⎪⎝⎭,所以33π0πtan 3tan 3AB AM BM ααα⎛⎫=+=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.即:33π0πtan 3tan 3AB ααα⎛⎫=+<< ⎪⎛⎫⎝⎭- ⎪⎝⎭.②方法1:3tan 1312333πtan tan tan 3tan 3tan ta 3331n AB ααααααα⎛⎫+=+=+=+- ⎪ ⎪⎛⎫--⎝⎭- ⎪⎝⎭()143tan 4tan 3tan 3tan 333533tan tan 3tan 3tan αααααααα⎛⎫-⎛⎫⎡⎤=++--=++- ⎪ ⎪ ⎪⎣⎦--⎝⎭⎝⎭3(54)3363≥⨯+-=,当且仅当π6α=时等号成立,故木栈道AB 的长度最小值为63km .方法2:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π11ππ1ππcos(2)cos[()]cos[()]cos(2)cos 32233233αααααααα-+=⨯=⨯=⎡⎤⎡⎤-----+---⎢⎥⎢⎥⎣⎦⎣⎦因为π03α<<,所以πππ2333α-<-<,所以1πcos(2)123α<-≤,所以3363π1cos(2)32AB α=≥--,故木栈道AB 的长度最小值为63km .方法3:πππcos()cos sin()sin cos()33333πππtan sin sin()sin sin()33cos tan 333AB αααααααααααα⎛⎫--+- ⎪=+=+=⨯ ⎪⎛⎫ ⎪--- ⎪⎝⎭⎝⎭ππsin[()]sin333333π13131sin(2)sin (cos sin )sin 2(1cos 2)622244αααααααα-+=⨯=⨯=+----,因为π03α<<,所以ππ5π2666α<+<,所以1πsin(2)126α<+≤,所以3363π1sin(2)62AB α=≥+-,故木栈道AB 的长度最小值为63km .【点睛】方法点睛:解三角形的应用问题的要点(1)从实际问题抽象出已知的角度、距离、高度等条件,作为某个三角形的元素;(2)利用正弦、余弦定理解三角形,得实际问题的解.解三角形中最值(范围)问题的解题策略利用正弦、余弦定理以及面积公式化简整理,构造关于某一个角或某一边的函数或不等式,利用函数的单调性或基本不等式等求最值(范围).。
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列数中,既是奇数又是质数的是:A. 3B. 4C. 5D. 62. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 16厘米B. 24厘米C. 32厘米D. 40厘米3. 小明有5个苹果,小红比小明多3个苹果,小红有多少个苹果?A. 5个B. 8个C. 10个D. 12个4. 下列图形中,面积最大的是:A. 正方形B. 长方形C. 三角形D. 梯形5. 一个数既是3的倍数又是5的倍数,这个数最小可能是多少?A. 15B. 30C. 45D. 606. 下列分数中,分子和分母相差最大的是:A. $\frac{3}{4}$B. $\frac{5}{8}$C. $\frac{7}{9}$D.$\frac{11}{12}$7. 小华骑自行车去图书馆,每小时行12千米,他用了1小时到达图书馆,图书馆距离他家多少千米?A. 12千米B. 24千米C. 36千米D. 48千米8. 下列数中,是2的倍数但不是4的倍数的是:A. 8B. 10C. 12D. 149. 小红有20个铅笔,小明比小红多10个铅笔,小明有多少个铅笔?A. 10个B. 20个C. 30个D. 40个10. 下列图形中,边数最多的是:A. 三角形B. 四边形C. 五边形D. 六边形二、填空题(每题2分,共20分)11. 3乘以4等于______。
12. 7除以2等于______(分数形式)。
13. 一个长方形的长是6厘米,宽是3厘米,它的面积是______平方厘米。
14. 下列数中,最小的质数是______。
15. 一个圆的半径是5厘米,它的周长是______厘米。
16. 小华有15个苹果,他每天吃3个苹果,他可以吃______天。
17. 下列数中,既是奇数又是合数的是______。
18. 一个长方体的长、宽、高分别是4厘米、3厘米、2厘米,它的体积是______立方厘米。
一年级数学期中考试题一、选择题(每题2分,共20分)1. 下列哪个数字比5大,但比10小?A. 2B. 7C. 12D. 152. 如果小明有3个苹果,他给了小强2个,小明还剩几个苹果?A. 1个B. 2个C. 3个D. 4个3. 5加8等于多少?A. 12B. 13C. 14D. 154. 下列哪个数字是偶数?A. 1B. 2C. 3D. 55. 以下哪个不是10以内的数字?A. 7B. 9C. 11D. 86. 一个班级有20个学生,如果每个学生需要2支铅笔,那么需要多少支铅笔?A. 30支B. 40支C. 50支D. 60支7. 以下哪个是正确的减法运算?A. 10 - 5 = 6B. 9 - 3 = 12C. 8 - 2 = 5D. 7 - 4 = 38. 一个正方形有4个角,每个角都是多少度?A. 30度B. 45度C. 90度D. 180度9. 以下哪个数字是奇数?A. 2B. 4C. 6D. 910. 一个篮子里有5个苹果,如果拿走2个,篮子里还剩多少个苹果?A. 2个B. 3个C. 4个D. 5个二、填空题(每题2分,共20分)11. 从1数到10,一共有______个数字。
12. 10以内最大的数字是______。
13. 一个数加上0,结果仍然是______。
14. 一个数减去0,结果仍然是______。
15. 一个长方形有4个角,每个角都是______度。
16. 一个圆的周长是它的直径的______倍。
17. 5个相同的数相加,结果是25,这个数是______。
18. 一个班级有15个学生,如果每个学生需要3支铅笔,那么需要______支铅笔。
19. 一个数的2倍是10,这个数是______。
20. 一个班级有18个学生,如果每个学生需要2本练习本,那么需要______本练习本。
三、计算题(每题5分,共30分)21. 计算下列各题:- 6 + 7 = ______- 9 - 3 = ______- 8 + 4 = ______- 10 - 5 = ______22. 用竖式计算下列各题:- 15 + 23 = ______- 47 - 18 = ______- 34 + 29 = ______- 56 - 27 = ______四、应用题(每题5分,共30分)23. 小华有15张画纸,他用掉了6张,还剩多少张?24. 学校图书馆有30本书,借出去了8本,还剩多少本?25. 一个班级有40个学生,如果每个学生需要4支铅笔,那么需要多少支铅笔?26. 小明有10个苹果,他给了小强3个,又给了小丽2个,小明还剩多少个苹果?请注意,本试题旨在考察一年级学生对基本数学概念的理解和应用能力。
部编版一年级数学下册期中考试题(参考答案)(时间:60分钟分数:100分)班级:姓名:分数:一、计算小能手(20分)1、直接写出得数.7+6= 9-5= 8+10= 6-0= 4+4+4=6-6= 3+9= 2+5= 8+6= 9-1+7=7+7= 11-4= 12+2= 4+3= 10-4-5=6+3= 14-9= 17-8= 8-2= 3+8+0=二、填空题。
(共20分)1、100是由()个十组成的.2、13里面有()个十和()个一;3、17里面有()个十和()个一.4、计算12-7时,笑笑摆出了这样的小棒:先算(),再算(),所以12-7=()。
5、用7、8、15写出一道加法算式和一道减法算式.______+______=______ ______- ______=______6、比100小1的数是(),40比()大1,比()小1.7、读数和写数都从()位起。
8、计数器上,从右边数起,第一位是()位,第二位是()位,第三位是()位,第四位是()位.9、下图,共有()捆小棒,是()个十。
10、100里面有()个十.三、我会选。
(10分)1、二年(1)班有39人,二年(2)班有32人,两个班能坐下吗?()A.能坐下B.坐不下2、90-40+50=()A.27 B.55 C.100 D.903、1个十和3个一合起来的数是().A.13 B.31 C.44、左边数起的第6个,就是右边数起的第()个.A.2 B.3 C.4 D.55、下面是一群小动物在一起休息.从右数起小象是第()位.A.2 B.4 C.5 D.6四、数一数,填一填。
(10分)1、.有(____)个有(____)个有(____)个有(____)个五、看图列式计算。
(16分)1、.(颗) (只) 2、.(个)列式:__________________六、解决问题。
(24分)1、每个盘子装5个桃,3个盘子能装下这些桃吗?2、有20名运动员和6名教练,一箱矿泉水共有24,每人1瓶,够吗?3、要来14个客人,每人1套餐具.还需要多少套餐具?4、原来有几条鱼?5、妞妞家的羊圈里有10只小羊,第一次跑出了3只,第二次跑出了1只.羊圈里还剩几只小羊?= (只)6、在下面三盘梨中,如果一次只能端两盘,那么一次最多能端多少个梨?(个)参考答案一、计算小能手(20分)1、13;4;18;6;120;12;7;14;1514;7;14;7;19;5;9;6;11二、填空题。
2017-2018学年度第一学期67896789小学中质量检测卷一年级数学满分100分,考试时间90分题号一二三四总分7891078910得分4.填一填。
(5分,每空1分)一.填空题(34分)752 31、数一数。
(6分,每空1分)2431635.按顺序填数。
(共6分,每空1分)()()64246.我会从大到小排一排。
(共5分,每空1分)()()47152()>()>()>()>() ()()二、看谁算的对。
(共20分,每题1分。
)2.圈一圈。
(4分,每小题2分)2+2=4+5=7-3=7+2=4+3= (1)把左边的5个▼圈起来:▼▼▼▼▼▼▼9-7=3+5=2+4=9-5=9-6= (2)把从左数第4个▼圈起来:▼▼▼▼▼▼▼5-2=6-5=8-6=6-4=2+3= 3、数一数,圈一圈。
(8分,每空2分2+5=7-0=0+5=7-7=4+4=三、比一比、填一填。
(共26分)1.画一画。
(共4分,每题2分)(1)画,比多两个。
(2)画,比少3个。
2.比一比。
(共3分,每题1.5分)(1)在多的后面画√。
()()四、看图写算式。
(共20分,每题5分)(2)在少的后面画√。
()()3.数一数。
(5分,每空1分)□○□=□□-□=□(1)小象跑在小牛的()面,小狗跑在小兔的()面。
(2)小兔跑第(),它的后面还有()个,前面还有()个。
4、在〇里填上<、>或=(共6分,每空1分)。
6〇25-0〇04〇2+14〇77〇1+62+2〇64.数一数,填一填。
(8分)2017-2018学年第一学期期中考试6-245-554-24一年级数学试卷4.(2分)里可以填几?4-=3+3=3+1=4-=2 班级姓名学号总分二、算一算。
(共32分) 一、写一写,填一填。
1+6=5-3=0+6=6-6=1.(8分)写数。
5-4=2+3=6-2=3+3=(1)看图写数。
5-2=1+3=2+0=5-5=6+1=7-4=3+4=7-6=三、连一连。
部编人教版一年级数学下册期中考试(加答案)(时间:60分钟分数:100分)班级:姓名:分数:一、计算小能手(20分)1、直接写得数.65-12= 27+11= 61+29= 92-42= 12+80=33+57= 75-20= 35-11= 28+52= 96-16=38+22= 47-11= 36+54= 70-25= 35-14=40+30= 81+15= 69-50= 84-14= 96-80=二、填空题。
(共20分)1、计算12-7时,笑笑摆出了这样的小棒:先算(),再算(),所以12-7=()。
2、13里面有()个十和()个一;3、19前面的一个数是(),后面的一个数是()。
4、下图,共有()捆小棒,是()个十。
5、找规律填数。
6、个位上是2,十位上是1的数是().7、看图写数。
()()()8、十位上是1,个位上是7,这个数是().9、最大的两位数是(),最小的两位数是()。
10、小猴有15个香蕉,小象有9个香蕉,小猴给小象()个香蕉,他俩的香蕉就一样多了。
三、我会选。
(10分)1、小华站在操场上,面向东南方,他的背面是()方。
A.东北B.西北C.西南2、一个长方体如果长、宽、高都分别扩大2倍,那么它的表面积扩大()倍.A.2 B.4 C.83、小明站在阳台上面向东方,她向左转,面向()方。
A.东B.西C.北D.南4、一年级有15名同学玩捉迷藏游戏,已经捉住了9名,还剩()名没有捉住.A.6 B.5 C.45、下面多得是().A.B.四、数一数,填一填。
(10分)1、.(____)个(_____)个(_____)个(_____)个五、看图列式计算。
(16分)1、.2、.=六、解决问题。
(24分)1、小明和小兰到书店去买同一本书,可是一看定价,小明缺6元5角,小兰缺8元2角.他俩把钱凑在一起,正好能买一本书.这本书的价钱是多少元?2、一共有15只小兔。
(只)3、故事书每本6元,科技书每本8元,连环画每本7元,买两本不同的书最少要多少元?(元)答:买两本不同的书最少要()元。
高2024级高一上学期11月半期测试数学试题(答案在最后)一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.设全集{0,1,2,3,4,5}U =,集合{1,2,3}A =,{5,4,3}B =,则=U A B ⋂ð()A.{1,2,3,4,5}B.{1,2}C.{0,1,2}D.{0,1,2,3}2.已知集合{}2|1,M y y x x R ==+∈,{}|1,N y y x x R ==+∈,则M N ⋂=A.()()0,1,1,2B.()(){}0,1,1,2C.{|1y y =或2}y =D.{}|1y y ≥3.已知函数()*(2),nf x x n =-∈N ,则“1n =”是“()f x 是增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列说法正确的是()A.若a b >,则22a b >B.“2x >”是“112x <”的充分不必要条件C.若幂函数()22231m m y m m x--=--在区间 ㈮㔷∞上是减函数,则2m =D.命题“2,0x x x ∀∈+≥R ”的否定为“2,0x x x ∃∈+≥R ”;5.已知命题()()2:R,110p x m x ∃∈++≤,命题2:R,10q x x mx ∀∈-+>恒成立.若p 和q 都为真命题,则实数m 的取值范围为()A.2m ≥B.21m -<≤-C.2m ≤-或2m ≥D.12m -<≤6.已知函数()f x =,则()A.()1ff f >>- B.()1ff f >>-C.()1ff f>-> D.()1f ff ->>7.用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),*,C A C B C A C B A B C B C A C A C B ⎧-≥⎪=⎨-<⎪⎩.已知{}1,2A =,()(){}22|20B x x ax x ax =+++=,且*1A B =,设实数a 的所有可能取值构成集合S ,则()C S =()A .4B.3C.2D.18.已知函数()()()21,12,1x x f x f x x ⎧-≥⎪=⎨--<⎪⎩,若对于任意的实数x ,不等式()24()1f x a f x -≤+恒成立,则实数a 的取值范围为()A.1,2⎡⎫-+∞⎪⎢⎣⎭B.1,12⎡⎤-⎢⎥⎣⎦C.3,4⎡⎫-+∞⎪⎢⎣⎭D.3,14⎡⎤-⎢⎥⎣⎦二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.知函数()f x 满足1211x f x x +⎛⎫= ⎪+⎝⎭,则关于函数()f x 正确的说法是()A.()f x 的定义域为{}1x x ≠- B.()f x 值域为{1y y ≠,且2}y ≠C.()f x 在 ㈮㔷∞ 单调递减D.不等式()2f x >的解集为(1,0)-10.已知a ,b 均为正数,且1a b -=,则()A.a >B.221->a b C.411-≤a bD.13a b+>11.已知函数()2211x xf x x x +=++,则下列结论正确的是()A.()f x 在()1,+∞上单调递增B.()f x 值域为][(),22,∞∞--⋃+C.当0x >时,恒有()f x x >成立D.若12120,0,x x x x >>≠,且()()12f x f x =,则122x x +>三、填空题:本题共3小题,每小题5分,共15分.12.不等式3223x x -≥+的解集为________.13.若两个正实数x ,y 满足40x y xy +-=,且不等式26xy m m ≥-恒成立,则实数m 的取值范围是__________.14.已知函数()(),f x g x 都是定义在R 上的函数,()12f x -+是奇函数,()2g x -是偶函数,且()()()23,21f x g x g --=-=,则()()()234f f f ++=________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}{}23,31P x x Q x a x a =-<<=<≤+.(1)若,x Q x P ∀∈∈,求a 的取值范围;(2)若,x P x Q ∃∈∈,求a 的取值范围.16.已知集合A为使函数y =R 的a 的取值范围,集合{}22210B x x ax a =++-≤(a 为常数,R a ∈).若x A ∈是x B ∈的必要条件,试求实数a 的取值范围.17.在园林博览会上,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80万元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x (万台)满足如下关系式:1802,020()2000900070,20(1)x x G x x x x x -<≤⎧⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.18.已知函数()f x 的定义域为()0,∞+,对任意正实数a b 、都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.(1)求()120242024f f ⎛⎫+⎪⎝⎭的值,(2)判断函数()f x 的单调性并加以证明:(3)当[]1,3x ∈时,关于x 的不等式()()32f kx f x -+>恒成立,求实数k 的取值范围.19.设函数()2,y ax x b a b =+-∈∈R R .(1)若54b a =-,且集合{|0}x y =中有且只有一个元素,求实数a 的取值集合;(2)0a <时,求不等式(22)2y a x b <--+的解集;(3)当0,1a b >>时,记不等式0y >的解集为P ,集合{|22}Q x t x t =--<<-+,若对于任意正数t ,P Q ⋂≠∅,求11a b-的最大值.高2024级高一上学期11月半期测试数学试题一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.【1题答案】【答案】B 【2题答案】【答案】D 【3题答案】【答案】A 【4题答案】【答案】BC 【5题答案】【答案】B 【6题答案】【答案】A 【7题答案】【答案】B 【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】(,3)[8,)-∞-+∞【13题答案】【答案】[]28-,【14题答案】【答案】6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)2,3⎡⎫-+∞⎪⎢⎣⎭(2)13,2⎛⎫- ⎪⎝⎭【16题答案】【答案】11a -≤≤【17题答案】【答案】(1)2210050,020()9000101950,201x x x W x x x x ⎧-+-<≤⎪=⎨--+>⎪+⎩;(2)当年产量为29万台时,该公司获得的年利润最大为1360万元.【18题答案】【答案】(1)2(2)()f x 在()0,+∞上是增函数,证明见解析(3)()4,+∞【19题答案】【答案】(1)1{0,,1}4;(2)答案见解析;(3)12.。
精选完整教案文档,希望能帮助到大家,祝心想事成,万事如意!完整教案@_@人教版小学一年级上册数学期中考试试题及答案(90分钟满分100分)姓名——班级——分数——一、口算。
(共12分,每题1分)。
8-3= 2+5= 3-1= 5-5=1+4= 9-0= 4+5= 6+2=0+4= 9-8= 6-3= 3-2=二、按要求填空。
(共35分)1. (共12分每空 3分))96 2 2 5 3 3 42、按顺序填数(共6分,每空1分)。
3、数一数(共5分,每空1分)。
.(1)一共有()只小动物,(2)从左数排第4 ,排第(),(3)前面有()只小动物,后面有()只小动物。
(4)从右边起圈出3只小动物。
4、在〇里填上<、>或=(共6分,每空1分)。
6〇9 8-0〇0 4〇2+17〇8 7〇1+6 7+2〇65、排一排(共6分,每空1分)。
3 17 3 5 2 9 17 9()>()>()>()>()>()三、比一比、填一填(共10分)。
1、画一画。
(共6分)(1)画,比多两个。
(2)画,比少3个2、比一比(共4分)。
(1)在多的后面画√。
()()(2)在少的后面画√。
( )( )四、连线 (8分,每题1分)。
五.数一数,分一分。
(共8分,每空2分)。
。
六、看图写算式。
(共27分,除第3小题9分,其余每小题6分) 1、 7分) 、只2、朵2+34+5 2+69-2 87 9 57-5 9-3 8-46-3 6 2 3 4=9只只 =------3、看图写两个加法算式和两个减法算式还剩几只?一共有7只,跳走2只。
7只只你看到了什么?你知道“?只”表示什么意思吗?=(只)一年级数学上册期中考试答案及评分朴准:一、口算(共12分,每题1分) (灵活题)5 、 7、 2、 0 5、 9、 9、 8 4、 1、 3、 1 二、按要求填空(共35分)4.==1、填一填(共12分,每空3分)(灵活题)8、 7、 6、 52、按顺序填数(共6分,每空1分)。
四川省一年级数学下学期期中考试试题 (附答案) 班级:_______ 姓名:_______ 学号:_______(试卷60分钟,满分为100分,附加题单独20分)同学们,一个学期过去了,你一定长进不少,让我们好好检验一下自己吧!一、我会填(本题共10分,每题2分)1、在( )里填上米或厘米。
①课本宽17( ) ②大树高大约10( )。
2、小亮从1写到40,他一共写了()个数字“2”。
3、树形填空题。
4、写门牌,填一填。
5、小红、小方、小明年龄各不相同,小红说:“我不是最大的”。
小方说:“我也不是最大的,但也不是最小的”。
三人中,最大的是(),最小的是()。
二、我会算(本题共20分,每题5分)1、小明看一本故事书,第一天看了6页,第二天看了10页,第三天从第几页看起?答:第三天从()页看起。
2、你只要能算出得数,你就一定能写出算式:3、想一想,算一算,填一填:4、看图列式计算。
三、我会比(本题共10分,每题5分)1、哪位同学高,在高的下面画“√”。
4、哪条线长,在长的后面画“√”。
2、比一比大小,在里填上“>”“<”或“=”。
四、选一选(本题共10分,每题5分)1、选一选,把正确答案圈出来。
2、选一选。
在合适答案下面的□里打“√”。
2.第一小组有男生7人,女生5人。
这些学生坐一辆汽车去动物园,坐哪一辆车比较合适?五、对与错(本题共5分,每题2.5分)1、他们说的话对吗?对的打“√”,错的打“×”。
2、正确选择(在正确答案的□里打√)六、数一数(本题共10分,每题5分)1、数一数,分一分。
2、数一数,写一写。
七、看图说话(本题共15分,每题5分)1、划一划。
(划去多余的o)2、看图找一找。
长方体有()个,圆柱体有()个,三角形和圆一共有()个。
3、连一连。
八、解决问题(本题共15分,每题3分)1、商店有35个洋娃娃,上午卖出9个,下午又卖出12个,一共卖出多少个?还剩多少个?答:一共卖出去()个;还剩下()个。