拉普拉斯变换
- 格式:doc
- 大小:975.00 KB
- 文档页数:10
拉普拉斯变换法
拉普拉斯变换法是一种数学积分变换,其核心是把时间函数f(t) 与复变函数F(s) 联系起来,把时域问题通过数学变换为复频域问题,把时间域的高阶微分方程变换为复频域的代数方程,在求出待求的复变函数后,再作相反的变换得到待求的时间函数。
由于解复变函数的代数方程比解时域微分方程较有规律且有效,所以拉普拉斯变换在线性电路分析中得到广泛应用。
拉普拉斯变换的定义
一个定义在[0,+∞) 区间的函数f(t) ,它的拉普拉斯变换式F(s) 定义为
式中s=σ+jω为复数,被称为复频率;F(s)为f(t)的象函数,f(t)为F(s)的原函数。
由F(s) 到f(t) 的变换称为拉普拉斯反变换,它定义为
式中c 为正的有限常数。
留意:
1)定义中拉氏变换的积分从t=0-开头,即:
它计及t=0-至0+ ,f(t) 包含的冲激和电路动态变量的初始值,从而为电路的计算带来便利。
2)象函数F(s) 一般用大写字母表示, 如I(s),U(s) ,原函数f(t)
用小写字母表示,如i(t),u(t)。
3)象函数F(s) 存在的条件:。
拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。
左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。
以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。
如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。
z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。
作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。
拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。
FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。
拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。
但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。
Fourier 变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。
拉普拉斯变换公式大全1.原始函数的拉普拉斯变换F(s)=L{f(t)}2.常数的拉普拉斯变换对于任意实常数A,其拉普拉斯变换为:L{A}=A/s3.单位冲激函数的拉普拉斯变换单位冲激函数δ(t)的拉普拉斯变换为:L{δ(t)}=14.时延定理时延定理指出,当原始函数向右延时T秒时,其拉普拉斯变换会乘以e^(-sT)。
具体公式如下:L{f(t-T)}=e^(-sT)F(s)5.缩放定理缩放定理指出,当原始函数的变量变为原来的α倍时,其拉普拉斯变换会变为原来的1/α倍。
具体公式如下:L{f(αt)}=1/αF(s/α)6.积分定理积分定理指出,对于原始函数的积分,其拉普拉斯变换可以通过将变换域上的变量s除以s平方。
具体公式如下:L{∫f(t)dt} = 1/sF(s)7.乘积定理乘积定理指出,对于原始函数的乘积,其拉普拉斯变换可以通过将变换域上的变量s替换为s减去相应函数的变换。
具体公式如下:L{f(t)g(t)}=F(s)*G(s)8.指数函数的拉普拉斯变换指数函数e^(at)的拉普拉斯变换为:L{e^(at)} = 1/(s-a)9.幂函数的拉普拉斯变换幂函数t^n的拉普拉斯变换为:L{t^n}=n!/(s^(n+1))10.正弦函数的拉普拉斯变换正弦函数sin(ωt)的拉普拉斯变换可通过欧拉公式和拉普拉斯变换公式进行变换。
具体公式如下:L{sin(ωt)} = ω/(s^2 + ω^2)以上是拉普拉斯变换的一些重要公式。
通过应用这些公式,我们可以将原始函数在时域上的操作转换为变换域上的操作,从而解决各种线性常微分方程、控制系统和信号处理问题。
拉普拉斯变换一. 拉普拉斯变换的定义设f (t )是变量t 的函数,定义:F(s)=⎰∞-0)(dt e t f st 为f ( t )的拉普拉斯变换。
记为£[f(t)]=F(s).f(t)=⎰∞+∞-j j st dt e s F jσσπ)(21 称逆拉普拉斯变换,记为 f (t )=£-1[F(s)]。
二. 一些常用函数的拉普拉斯变换1. 阶跃函数 1(t )£[f (t)]=⎰∞)(e t f -st dt =⎰∞1e -stdt=–se st- t 2.指数函数 e - at £[ate-]=⎰∞--0dt e e st at =as +1 3.冲击函数 δ(t)£[δ(t)]=⎰∞-0)(dt e t stδ=1三. 拉普拉斯变换的性质1. 线性(叠加)f 1(t) F 1(s) f 2(t) F 2(s) K 1,K 2是常数, 则K 1f 1(t) +K 2f 2(t) K 1F 1(s) +K 2F 2(s)例。
F(t)=sinwt ,求拉式变换:∵sinwt=je e jwtjwt 2--jwt ejw s -1 , jwte - jws +1∴ sinwt22ws w+ 2. 原函数微分 f(t) F(s) 则dtt df )( sF(s) –f(0) nn dt t f d )( )0()()(11r n r r n n f s s F s ∑-=---式中)0()(r f表示)()(t f r 在-0处的值。
3. 原函数的积分 f(t) F(s) 则⎰∞-tdx x f )( sf s s F )0()()1(-+ 式中⎰∞--=0)1()()0(dx x f f4. 延时(时域平移 )f(t) F(s ) 则f(t-t 0)1(t-t 0) )(0s F e st -5. S 域平移 f(t) F(s) f(t)ate- F(s+a)例。
完整版拉普拉斯变换表拉普拉斯变换是一种用来描述动态系统的数学工具。
它可以将时间域的函数转换为复频域的函数,使得复杂的微积分运算变得简单。
下面是拉普拉斯变换常用的函数表。
1. 常数函数拉普拉斯变换表达式:L{1} = 1/s解释:常数函数的拉普拉斯变换等于1除以s。
这个表达式可以直接从拉普拉斯变换的定义得出。
2. 单位阶跃函数拉普拉斯变换表达式:L{u(t)} = 1/s解释:单位阶跃函数是在t=0处取值为0,t>0处取值为1的函数。
它的拉普拉斯变换等于1除以s。
因为当s>0时,1/s表示连续求导的意义,也就是说,一个单位阶跃函数的拉普拉斯变换就是一个连续求导的过程。
3. 指数函数拉普拉斯变换表达式:L{e^at} = 1/(s-a)解释:指数函数的拉普拉斯变换等于1除以s减去指数函数的指数。
这个表达式可以通过对指数函数求拉普拉斯变换的定义进行求解。
4. 正弦函数拉普拉斯变换表达式:L{sin(at)} = a/(s^2 + a^2)解释:正弦函数的拉普拉斯变换等于a除以s平方加上正弦函数的频率a的平方。
这个表达式可以通过对正弦函数求拉普拉斯变换的定义进行求解。
5. 余弦函数拉普拉斯变换表达式:L{cos(at)} = s/(s^2 + a^2)解释:余弦函数的拉普拉斯变换等于s除以s平方加上余弦函数的频率a的平方。
这个表达式可以通过对余弦函数求拉普拉斯变换的定义进行求解。
6. 阻尼正弦函数拉普拉斯变换表达式:L{e^(-bt)sin(at)} = a/(s^2 + (a+b)^2)解释:阻尼正弦函数的拉普拉斯变换等于a除以s平方加上阻尼正弦函数的频率a加上阻尼b的平方。
这个表达式可以通过对阻尼正弦函数求拉普拉斯变换的定义进行求解。
7. 阻尼余弦函数拉普拉斯变换表达式:L{e^(-bt)cos(at)} =(s+b)/(s^2 + (a+b)^2)解释:阻尼余弦函数的拉普拉斯变换等于s加上阻尼余弦函数的频率a加上阻尼b的平方,除以s平方加上阻尼余弦函数的频率a加上阻尼b的平方。
Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
拉普拉斯变换基本要求拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。
能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。
能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。
理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。
会判定系统的稳定性。
知识要点1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()stf t F s f t dt e ζ∞--==⎰逆变换 1[()]()()2j stj F s f t F s ds j e σσζπ+∞-∞==⎰双边拉普拉斯变换: 正变换()()stB s f t dt e F ∞--∞=⎰逆变换1()()2j stB j f t s ds j e F σσπ+∞-∞=⎰(2) 定义域若0σσ>时,lim ()0tt f t eσ-→∞=则()tf t eσ-在0σσ>的全部范围内收敛,积分0()stf t dte +∞--⎰存在,即()f t 的拉普拉斯变换存在。
0σσ>就是()f t 的单边拉普拉斯变换的收敛域。
0σ与函数()f t 的性质有关。
2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+(2) 原函数微分 若[()]()f t F s ζ=则()[]()(0)df t sF s f dtζ-=- 11()0()[]()(0)n n n n r r nr d f t s F s s f dt ζ----==-∑ 式中()(0)r f-是r 阶导数()r rd f t dt 在0-时刻的取值。
(3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]tf F s f t dt s sζ---∞=+⎰式中0(1)(0)()ff t dt ---∞=⎰ (4) 延时性若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---=(5) s 域平移若[()]()f t F s ζ=,则[()]()atf t e F s a ζ-=+(6) 尺度变换若[()]()f t F s ζ=,则1[()]()sf at F a aζ=(a >0) (7) 初值定理lim()(0)lim ()t o s f t f sF s ++→→∞==(8) 终值定理lim ()lim ()t s f t sF s →+∞→∞=(9) 卷积定理若11[()]()f t F s ζ=,22[()]()f t F s ζ=,则有1212[()()]()()f t f t F s F s ζ*=12121[()()][()()]2f t f t F s F s jζπ=*=121()()2j j F p F s p dp j σσπ+∞-∞-⎰3. 拉普拉斯逆变换 (1) 部分分式展开法首先应用海维赛展开定理将()F s 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数()f t 。
(2)留数法留数法是将拉普拉斯逆变换的积分运算转化为求被积函数()stF s e 在围线中所有极点的留数运算,即(1)11[()]()()[()]22j st st stj cF s F s e ds F s e ds F s e j jσσζππ+∞--∞===∑⎰⎰Ñ极点的留数 若i p 为一阶级点,则在极点i s p =处的留数21[()()]insti i i s p i r s p F s e X===-∑若i p 为k 阶级点,则111[()()](1)!ik k st i i s p k d r s p F s e k ds-=-=--4. 系统函数(网络函数)H (s ) (1) 定义系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即()()()zs R s H s E s =冲激响应()h t 与系统函数()H s 构成变换对,即()[()]H s h t ζ=系统的频率响应特性()()()()j w s jwH jw H s H jw e ϕ===式中,()H jw 是幅频响应特性,()w ϕ是相频响应特性。
(2) 零极点分布图1212()()()()()()()()()m n K s z s z s z N s H s D s s p s p s p ---==---L L 式中,K 是系数;1z ,2z ,L m z 为()H s 的零点;1p ,2p ,L ,n p 为()H s 的极点。
在s 平面上,用“d ”表示零点,“X ”表示极点。
将()H s 的全部零点和极点画在s 平面上得到的图称为系统的零极点分布图。
对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。
(3) 全通函数如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于jw 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。
全通网络函数的幅频特性是常数。
(4) 最小相移函数如果系统函数的全部极点和零点均位于s 平面的左半平面或jw 轴,则称这种函数为最小相移函数。
具有这种网络函数的系统为最小相移网络。
(5) 系统函数()H s 的求解方法①由冲激响应()h t 求得,即()[()]H s h t ζ=。
②对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由()()()zs R s H s E s =获得。
③根据s 域电路模型,求得零状态响应的像函数与激励的像函数之比,即为()H s 。
5. 系统的稳定性若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。
(1)稳定系统的时域判决条件()h t dt M +∞-∞≤⎰(充要条件) ① 若系统是因果的,则①式可改写为()h t dt M +∞≤⎰(2) 对于因果系统,其稳定性的s 域判决条件①若系统函数()H s 的全部极点落于s 左半平面,则该系统稳定;②若系统函数()H s 有极点落于s 右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;③若系统函数()H s 没有极点落于s 右半平面,但在虚轴上有一阶极点,则该系统临界稳定。
内容摘要例1求下列函数的拉氏变换 ()()1-=t tu t f 分析拉氏变换有单边和双边拉氏变换,为了区别起见,本书以()s F 表示()t f 单边拉氏变换,以()s F B 表示()t f 双边拉氏变换。
若文字中未作说明,则指单边拉氏变换。
单边拉氏变换只研究0≥t 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。
本例只讨论时移定理。
请注意本例各函数间的差异和时移定理的正确应用。
解答()()[]()()()[]s s st u t u t L t tu L s F -⎪⎭⎫⎝⎛+=-+--=-=e 1111112例2求三角脉冲函数)(f t 如图4-2(a )所示的象函数拉氏变换的定义和收敛域典型信号的拉氏变换二.单边拉氏变换逆变换的求法部分分式展开法围线积分法三.拉氏变换的基本性质 四.用拉普拉斯变换法分析电路五.系统函数一.拉普拉斯分析 和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。
解答方法一:按定义式求解方法二:利用线性叠加和时移性质求解 方法三:利用微分性质求解 方法四:利用卷积性质求解 方法一:按定义式求解方法二:利用线性叠加和时移性质求解由于于是 方法三:利用微分性质求解分析 信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。
将()t f 微分两次,所得波形如图4-2(b )所示。
显然由图 于是方法四:利用卷积性质求解()t f 可看作是图4-2(c )所示的矩形脉冲()t f 1自身的卷积 于是,根据卷积性质而所以例3应用微分性质求图4-3(a )中 的象函数下面说明应用微分性质应注意的问题,图4-3(b ) ()2f ()t f 3是的导数 的波形。
()⎪⎩⎪⎨⎧<<-<<=其他 02t 1 21t 0t t t f ()()()()22222222110101010210e 11e 1e 2e 2e 21e 1e 1d e d e 2d e 1e 1d e 2d e d e ss s s s s s st stst st stst st s s s s s s s s tt t t s s t t tt t t t f s F -------------∞--=-++-+--=-++⎪⎭⎫ ⎝⎛-=-+==⎰⎰⎰⎰⎰⎰-----()()()()()()22112--+---=t u t t u t t tu t f ()[]()[]()0e 102st s F t t f L s t tu L -=-=()()()2222e11e e 211s s s s s s F ----=+-=2](1L -=L 2e 1ss F s --=()()22e11s s s F --=()()()t f t f t f 11*=()()()s F s F s F 11=()()sss F --=e 111()()22e 11sss F --=图4-2(c )()()t f t f t f 321),(,(),1t f ()()()t f t f t f 321,,'''图4-3(a )解答 说明, ()()(),21t u t f t f =由于故二者的象函数相同,即因而这是应用微分性质应特别注意的问题。
由图4-3(b )知例4 某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
为图中所示的矩形脉冲时,求此时系统的输出阶跃响应则例5电路如图4-5(a )所示 (1)求系统的冲激响应。
(2)求系统的起始状态 使系统的零输入响应等于冲激响应。
(3)求系统的起始状态, 解答(1)求系统的冲激响应。
系统冲激响应()t h 与系统函数()s H 是一对拉氏变换的关系。
对()s H 求逆变换可求得()t h ,这图4-4(b)()s F 1)(),但f t f 21≠()[]()[]t f L t f L 21'≠'),故011=-()[]()301=-='s sF t f L ()(),故,由于对于2022=-f t f ()[]()122=-='s sF t f L ()()()()(),,一阶导数相同,但和虽然002033232==--f f t f t f 因此()()()()2d 0d 0202+=+=⎰⎰---x x δf x x δt f tt()()()()xx δf x x δt f t t d 0d 0303⎰⎰--=+=-()()[]()sf s t δF s s F 301122=+=-()()[]()sf s t δF s s F 101133=+=-()[]()301=-='s sF t f L ()s s F 31=则()[]()122=-='s sF t f L ()ssF 32=则()()x x δt f td 03⎰-=()()[]()sf s t δF s s F 101133=+=-则()()()()();时,系统的输出为当输入t u t t y t δt x t -+==e 11δ()()()()();时,系统的输出为当输入t u t y t t u t x t -==e 322()t x 3当输入()。