2011上海高三数学难点公式总结50条
- 格式:doc
- 大小:797.00 KB
- 文档页数:10
上海高中数学公式总结大全摘要:一、引言二、上海高中数学公式概述1.数学分析2.高等数学3.概率论与数理统计4.线性代数5.数学建模三、数学分析公式1.极限2.导数与微分3.积分四、高等数学公式1.微分方程2.多元函数微分学3.多元函数积分学五、概率论与数理统计公式1.概率分布2.随机变量3.假设检验六、线性代数公式1.矩阵运算2.线性方程组3.特征值与特征向量七、数学建模公式1.模型建立2.模型求解3.模型评价与优化八、结论正文:一、引言在上海高中数学学习中,数学公式起着至关重要的作用。
为了帮助同学们更好地掌握这些公式,本文对上海高中数学公式进行了总结,涵盖了数学分析、高等数学、概率论与数理统计、线性代数以及数学建模等五个方面。
希望同学们能够通过本文,提高自己的数学学习效率,取得更好的成绩。
二、上海高中数学公式概述1.数学分析数学分析是研究函数、极限、连续、微分、积分等概念及其性质的学科。
在上海高中数学课程中,数学分析部分的公式主要包括:(1)极限公式(2)导数与微分公式(3)积分公式2.高等数学高等数学是数学的重要分支,主要包括微分方程、多元函数微分学、多元函数积分学等内容。
在上海高中数学课程中,高等数学部分的公式主要包括:(1)微分方程公式(2)多元函数微分学公式(3)多元函数积分学公式3.概率论与数理统计概率论与数理统计是研究随机现象及其规律的学科。
在上海高中数学课程中,概率论与数理统计部分的公式主要包括:(1)概率分布公式(2)随机变量公式(3)假设检验公式4.线性代数线性代数是研究向量、矩阵、线性方程组等概念的学科。
在上海高中数学课程中,线性代数部分的公式主要包括:(1)矩阵运算公式(2)线性方程组公式(3)特征值与特征向量公式5.数学建模数学建模是运用数学方法解决实际问题的学科。
在上海高中数学课程中,数学建模部分的公式主要包括:(1)模型建立公式(2)模型求解公式(3)模型评价与优化公式三、结论上海高中数学公式总结大全旨在帮助同学们系统地学习和掌握高中数学公式,提高数学成绩。
上海高考高三数学所有公式汇总集合命题不等式公式1、C u (Ac B) = _____ C u A u C u B _____ ; C u (A u B) = _____ C u Ac C u B ________ _: 2 、 A B =A u _ A B _ ; A_. B =B :=_ A B __C u B 二 C uAu _A 二 B ___;Ac Cu B= 0 ______ AJ B _____ ; C U A Q B =U = _______ A9 B _____ 。
3、 含n 个元素的集合有:个子集,__2n -1—个真子集,_2n —1__个非 空子集,_2n -2—个非空真子集。
4、 常见结论的否定形式5、 四种命题的相互关系: —原命题—与— 逆否命题—互为等价命题; _______ 否 命题 与 逆命题 互为等价命题。
6、 若 p= q ,贝U p 是q 的 充分 条件;q 是 p 的 必要 条件。
7、 基本不等式:(1) a, b ^R : _______ a 2+b 2兰2ab ______________ 且仅当a = b 时取等号。
(2) a,b ^R *: ____________ a+b A 2j ab ____________ 且仅当 a = b 时取等号。
(3) 绝对值的不等式: _________ |a| -|b|冃a 士b 冃a| + |b| ___________ 8均值不等式:a, b Rab等且仅当a 二b 时取等号。
f(x)一0-f (x) g(x) -0 f(x )"一 g(x).g(x)=0g(x )9、分式不等式:f ( x) g(x) 0g(x 尸 0f(n)n2a20、a 芝0时,y max"f(—2ba ) m£—n b f (m) -一兰 mi 2a4、奇函数f(-x)= ________ - f (x) ______ ,函数图象关于 原点 对称;偶函数f(-x)= ________ f(x) ________ =_f(|x|)___,函数图象关于 y 轴对称。
高考难点公式总结50条1.集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个. 2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 3.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .3.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.4.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.B A ⊆⇔(2)必要条件:若q p ⇒,则p 是q 必要条件. A B ⊆⇔(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. B A =⇔ 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.6.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 7.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.8.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.9.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.10.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 11.几个常见的抽象函数原型(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 12.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2))0)(()(1)(≠=+x f x f a x f ,或f(x+a)=-f(x),则)(x f 的周期T=2a ; (3) )()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 12.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆. 若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 13.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤14.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,n n n co απαα-⎧-⎪+=⎨⎪-⎩15.三角函数的概念函数y=Asin(ϕω+x ),ϕ称为初相,ϕω+x =0的x 称为相位移,ϕω+x 称为相。
沪高考知识点公式总结
一、数学
1. 几何公式
(1)三角形面积公式:S = a*b*sinC/2
(2)三角形周长公式:P = a+b+c
(3)矩形面积公式:S = l*w
(4)圆周长公式:C = 2*π*r
(5)圆面积公式:S = π*r*r
2. 代数公式
(1)二次方程求根公式:x = (-b±√(b²-4ac))/(2a) (2)直线斜率公式:k = (y2-y1)/(x2-x1)
(3)直线方程公式:y = kx+b
3. 统计学公式
(1)均值公式:μ = Σx/n
(2)方差公式:Σ(x-μ)²/n
(3)标准差公式:√(Σ(x-μ)²/n)
二、物理
1. 力学公式
(1)牛顿第一定律:F = ma
(2)牛顿第二定律:F = dp/dt
(3)牛顿第三定律:F1 = -F2
2. 动力学公式
(1)速度公式:v = x/t
(2)加速度公式:a = Δv/Δt
(3)牛顿运动定律:F = ma
三、化学
1. 化学平衡公式
(1)动态平衡常数公式:Kc = [C]c/[A]a[B]b
(2)平衡常数公式:K = e^(-ΔG/RT)
(3)反应速率常数公式:k = Ae^(-Ea/RT)
2. 化学反应公式
(1)原子分子量公式:M = Σ(ni*mi)
(2)摩尔浓度公式:c = n/V
(3)摩尔体积公式:V = V/n
总结:上海高考数学、物理、化学知识点公式主要包括几何公式、代数公式、统计学公式、力学公式、动力学公式、化学平衡公式和化学反应公式,掌握这些公式对于高考的考试非
常重要。
上海高中高考数学知识点总结(大全) 一、集合与常用逻辑1 .集合概念 元素:互异性、无序性2 .集合运算 全集U:如U=R交集:A B {xx A 且x B}并集:A B {xx A 或x B}补集:C U A {xx U 且x A}3 .集合关系 空集 A子集A B :任意x A x B注:数形结合---文氏图、数轴4 .四种命题5 .充分必要条件p 是q 的充分条件:P qp 是q 的必要条件:P qp 是q 的充要条件:p?q6 .复合命题的真值①q 真(假)? “ q ”假(真)②p 、q 同真? “pA q”真③p 、q 都假? “p V q”假7 .全称命题、存在性命题的否定M,p(x )否定为:M, p(X)M,p(x )否定为: M, p(X) 原命题:若p 则q否命题:若 P 则q原命题 逆否命题逆命题:若q 则p 逆否命题:若 q 则p 否命题 逆命题二、不等式1 . 一元二次不等式解法若a 0, ax 2 bx c 0有两实根,( ),则ax 2 bx c 0 解集(,)ax 2 bx c 0 解集(,)(,)注:若a 0,转化为a 0情况2 .其它不等式解法一转化x a xa 或 x ax 2a 2f (x) 0 log a f(x) log a g(x) (0 a 1) f(x) g(x) 3 .基本不等式① a 2 b 2 2ab②若 a,b R ,则 b JOb 2 注:用均值不等式a b 2同、ab (a —b)22求最值条件是“一正二定三相等” 三、函数概念与性质1 .奇偶性f(x)偶函数 f ( x) f (x) f(x)图象关于y 轴对称f(x)奇函数 f( x) f(x) f(x)图象关于原点对称②f(x)奇函数,在x=0有定义 f(0)=0③“奇+ 奇=奇”(公共定义域内)2 .单调性f(x)增函数:x 〔vx 2 f(x 1) < f(x 2)或 x 1>x 2 f(x 1) >f(x 2)f(x) a g(x)f(x) g(x) ( a 1) 注:①f(x)有奇偶性 定义域关于原点对称或 f (x l ) f(x 2) x 1 x 2f(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增 +增二增"③奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反闭区间上最值:配方法、图象法、讨论法注意对称轴与区间的位置关系四、基本初等函数n ——1 (a 0) a n=n a m m a n a 3. 周期性T 是f(x)周期 f(x T) f3恒成立(常数T 0)4. 二次函数解析式:f(x)=ax 2+bx+c, f(x)=a(x-h) 2+kf(x)=a(x-xi )(x-x 2) 对称轴: b x ——2a 顶点:(b 4 ac b 2)2 a , 4 a 单调性: a>0,(>]递减,[*,)递增* b 当x 2a ,f(x) 4 ac b 2min 4 a奇偶性: f(x)=ax 2+bx+c 是偶函数b=0注:一次函数f(x)=ax+b 奇函数 b=0指数式 a 02.对数式log a N b a b N (a>0,awl)注:Tt质log a 1 0 log a a 1 a10gaN N常用对数1g N log io N , lg 2 1g 5 1自然对数ln N log e N ?lne 13.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)14.募函数y x2, y x3, y x2, y x 1y x在第一象限图象如下:五、函数图像与方程1.描点法函数化简“定义域”讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”伸缩:y f(x)每一点的横坐标变为原来的倍y fjx)对称:“对称谁,谁不变,对称原点都要变”直线 x a注:y f(x) y f (2a x) 翻折:y f (x) y | f (x) |保留x轴上方部分,并将下方部分沿x轴翻折到上方y f(x) y f (|x|)保留y轴右边部分,并将右边部分沿y轴翻折到左边3.零点定理若f(a)f(b) 0,则y f(x)在(a,b)内有零点(条件:f (x)在[a,b]上图象连续不间断)注:①f(x)零点:f(x) 0的实根②在[a,b]上连续的单调函数f(x), f(a)f(b) 0则f(x)在(a,b)上有且仅有一个零点③二分法判断函数零点---f(a)f(b) 0?六、三角函数1.概念第二象限角(2k —,2k )( k Z)22.弧长l r 扇形面积S -lr23,定义sin y cos x tan —r r x其中P(x, y)是终边上一点,PO r4.符号“一正全、二正弦、三正切、四余弦”5.诱导公式:“奇变偶不变,符号看象限”如Sin(2 ) sin , cos( /2 ) sin 6.特殊角的三角函数值7.基本公式同角sin2cos2 1 sintan cos倍角 sin2 2sin cos1 cos2 sin 2正弦定理:— = — = — sin A sin B sin C余弦定理:a 2=b 2+c 2-2 bccosA (求边).222cosA= --- c ———(求角)2bc面积公式:S A = — ab sin C 2注: ABC 中,A+B+C= A B sin A sinBa 2>b 2+c 2? /A> — 2七、数列 和差sin sin cos cos sin叠力口 sin cos .. 2sin( —) 8.三角函数的图象性质单调性: AB Ctan(A+B)=-tanC sin A —B cos-2 2降募cos 2 a 2 1 cos2a = -----21、等差数列定义:a n 1 a n d通项:a n a1 (n 1)d求和:S n n(a1一肛na1 1n(n 1)d2 2中项:b a^S(a,b,c成等差)性质:若m n p q,贝U a m a n a p a q2、等比数列定义:亘二q(q 0) a n通项:a n a1q n 1na1 (q 1) ai(1 q n) - (q 1)1 q求和:S n中项:b2ac ( a,b,c成等比)性质:若m n p q 则a m a n a p a q3、数列通项与前n项和的关系4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1.向量加减三角形法则,平行四边形法则AB BC AC首尾相接,O B O C=CB共始点中点公式:A B AC 2AD D是BC中点-►—■> ■ ■ a b cos2.向量数量积a b= =x1x2 y1y2注:① a, b 夹角:00< 9 < 1800②a,b同向:a b 口付3.基本定理a 1e) 2e2 ( e1,e2不共线--基底)(结合律)不成立九、复数与推理证明分类:实数(b 0),虚数(b 0),复数集C相等:实、虚部分别相等共辗:z a bi合情推理类比:特殊推出特殊 归纳:特殊推出一般直接与间接证明 综合法:由因导果比较法:作差一变形一判断一结论平行:a// b a b X 2 y i ( b 0 ) 垂直:a b a b 0 X 1X 2 y i y 2 0 模: L 2 2 =X y 2 (a b)2 夹角:cos|a||b |(消去律) 不成立 复数概念 复数:z a bi (a,b R),实部 a 、虚部 b演绎 般导出特殊 (大前题”小前题”结论) 注:①0 // a 注:z 是纯虚数a 0,b 0模: .a 2 b 2 z z复平面:复数z 对应的点(a,b) 2. 复数运算加减: (a+bi) ± (c+di 尸乘法: (a+bi ) (c+di ) =?除法: a bi , (a bi)(c di) .c di (c di )(c di)乘方: i 2 i, i n 4k ri 3. 4.反证法:反设一推理一矛盾一结论分析法:执果索因分析法书写格式:要证A为真,只要证B为真,即证……,这只要证C为真,而已知C为真,故A必为真注:常用分析法探索证明途径,综合法写证明过程5.数学归纳法:(1)验证当n=1时命题成立,(2)假设当n=k(k N* , k 1)时命题成立,证明当n=k+1时命题也成立由(1)(2)知这命题对所有正整数n都成立注:用数学归纳法证题时,两步缺一不可,归纳假设必须使用十、直线与圆1、倾斜角范围0,斜率k tan 互上x2 x1注:直线向上方向与X轴正方向所成的最小正角倾斜角为90时,斜率不存在2、直线方程点斜式y y0 k(x x0),斜截式y kx b两点式^^工截距式)y 1 y y〔x2 x1 a b一般式Ax By C 0注意适用范围:①不含直线x x o②不含垂直x轴的直线③不含垂直坐标轴和过原点的直线3、位置关系(注意条件)平行k1 k2且b1 b2垂直k1k2 1 垂直A1A B1B2 04、距离公式两点间距离:|AB|=.区—x2)L(yly2)2点到直线距离:d 1A x0 By0C ,A2B25、圆标准方程:(x a)2 (y b)2 r2圆心(a , b ),半径r圆一般方程:x2 y2 Dx Ey F 0 (条件是?)圆心D, E半径「"2 E2 4F2 2 26、直线与圆位置关系注:点与圆位置关系Array (x° a)2 (y0 b)2 r2点P %多在圆外7、直线截圆所得弦长十一、圆锥曲线一、定义椭圆:|PF I|+|PF 2|=2a(2a>|F E。
备战2011年高考数学专题: 高考数学常用公式及结论200条集合● 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. ● 德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .● 包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=● 容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .● 集合12{,,,}n a a a 的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.● 集合A 中有M 个元素,集合B 中有N 个元素,则可以构造M*N 个从集合A 到集合B 的映射;二次函数,二次方程● 二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. ● 解连不等式()N f x M <<常有以下转化形式()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x NM f x ->- ⇔11()f x N M N>--. ● 方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k a b k +<-<,或0)(2=k f 且22122k ab k k <-<+. ● 闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}mi n ()min (),()f x f p f q =,若[]q p ab x ,2∉-=,则{}ma x ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. ● 一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .● 定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.简易逻辑●● 常见结论的否定形式● 四种命题的相互关系● 充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.函数● 函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.● 如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. ● 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;● 若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.● 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.● 若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.● 多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. ● 函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.● 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.● 若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.● 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.● 若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. ● 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. ● 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.指数与对数● 分数指数幂(1)m na=(0,,a m n N *>∈,且1n >).(2)1m nm naa-=(0,,a m n N *>∈,且1n >).● 根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.● 有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.● 指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.● 对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).● 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈.● 设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. ● 对数换底不等式及其推广若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. ● 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 数列● 等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. ● 等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.● 等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. ● 分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).三角函数● 常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.● 同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. ● 正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i nnn co n co απαα+⎧-⎪+=⎨⎪-⎩● 和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式);22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). ● 半角正余切公式:sin sin tan ,cot 21cos 1cos αααααα==+-● 二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. ● 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.● 三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. ● 正弦定理 2sin sin sin a b cR A B C===. ● 余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.● 面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=● 三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. ● 在三角形中有下列恒等式: ① sin()sin A B C +=②tan tan tan tan .tan .tan A B C A B C ++= ● 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.● 最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈. ● 角的变形:2()()2()()()ααβαββαβαβααββ=-++=+--=+-向量● 实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb . ● 向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. ● 平面向量基本定理 如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. ● 向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.● a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. ● a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. ● 平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.● 两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).● 平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).● 向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. ● 线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). ● 三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.● 点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .● “按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .● 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔== .(2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=.(5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+.不等式● 常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. ● 极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.● 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.● 含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.● 指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩直线方程● 斜率公式 ①2121y y k x x -=-(111(,)P x y 、222(,)P x y ).② k=tan α(α为直线倾斜角)● 直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).● 两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②两直线垂直的充要条件是 12120A A B B +=;即:12l l ⊥⇔12120A AB B += ● 夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.● 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A AB B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.● 四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0A x B yC ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.● 点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).● 或0<所表示的平面区域设直线:0l Ax By C ++=,若A>0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++<,0Ax By C ++>,若A<0,则在坐标平面内从左至右的区域依次表示 0Ax By C ++>,0Ax By C ++<,可记为“x 为正开口对,X 为负背靠背“。
[上海高中数学公式]上海高考数学公式大全[上海高中数学公式]上海高考数学公式大全高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tan α ²cotα=1sin α ²cscα=1cos α ²secα=1 sinα/cosα=tan α=sec α/cscαcos α/sinα=cot α=csc α/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin (-α)=-sin αcos (-α)=cos α tan(-α)=-tan αcot (-α)=-cot αsin (π/2-α)=cos αcos (π/2-α)=sin αtan (π/2-α)=cot αcot (π/2-α)=tan αsin (π/2+α)=cos αcos (π/2+α)=-sin αtan (π/2+α)=-cot αcot (π/2+α)=-tan αsin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan αcot (π-α)=-cot αsin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan αcot (π+α)=cot αsin (3π/2-α)=-cos αcos (3π/2-α)=-sin αtan (3π/2-α)=cot αcot (3π/2-α)=tan αsin (3π/2+α)=-cos αcos (3π/2+α)=sin αtan (3π/2+α)=-cot αcot (3π/2+α)=-tan αsin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan αcot (2π-α)=-cot αsin (2k π+α)=sin αcos (2k π+α)=cos αtan (2k π+α)=tan αcot (2k π+α)=cot α(其中k∈Z)两角和与差的三角函数公式万能公式sin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βcos (α+β)=cos αcos β-sin αsin βcos (α-β)=cos αcos β+sin αsin βtan α+tan βtan (α+β)=——————1-tan α ²tanβtan α-tan βtan (α-β)=——————1+tan α ²tanβ2tan(α/2)sin α=——————1+tan2(α/2)1-tan2(α/2)cos α=——————1+tan2(α/2)2tan(α/2)tan α=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sin αcos αcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tan αtan2α=—————1-tan2αsin3α=3sin α-4sin3αcos3α=4cos3α-3cos α3tan α-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsin α+sin β=2sin ———²cos———2 2α+β α-βsin α-sin β=2cos ———²sin———2 2α+β α-βcos α+cos β=2cos ———²cos———2 2α+β α-βcos α-cos β=-2sin ———²sin———2 2 1sin α ²cosβ=-[sin(α+β)+sin (α-β)]21cos α ²sinβ=-[sin(α+β)-sin (α-β)]21cos α ²cosβ=-[cos(α+β)+cos (α-β)]21sin α ²sinβ=— -[cos(α+β)-cos (α-β)]2化asin α ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card (A B)=card (A )+card(B )-card (A B)(1)命题原命题若p 则q逆命题若q 则p否命题若p则q逆否命题若q,则p(2)四种命题的关系(3)A B,A 是B 成立的充分条件B A,A 是B 成立的必要条件A B,A 是B 成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f (x2),称f (x )在D 上是增函数若x1<x2 f(x1)>f (x2),称f (x )在D 上是减函数(3)奇偶性对于函数f (x )的定义域内的任一x ,若f (-x )=f (x ),称f (x )是偶函数若f (-x )=-f (x ),称f (x )是奇函数(4)周期性对于函数f (x )的定义域内的任一x ,若存在常数T ,使得f (x+T)=f(x),则称f (x )是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga (MN )=logaM+logaNlogaMn =nlogaM (n∈R)指数函数对数函数(1)y =ax (a >0,a≠1)叫指数函数(2)x∈R,y >0图象经过(0,1)a >1时,x >0,y >1;x <0,0<y <10<a <1时,x >0,0<y <1;x <0,y >1a >1时,y =ax 是增函数0<a <1时,y =ax 是减函数(1)y =logax (a >0,a≠1)叫对数函数(2)x >0,y∈R图象经过(1,0)a >1时,x >1,y >0;0<x <1,y <00<a <1时,x >1,y <0;0<x <1,y >0a >1时,y =logax 是增函数0<a <1时,y =logax 是减函数指数方程和对数方程基本型logaf(x)=b f(x )=ab (a >0,a≠1)同底型logaf (x )=logag (x )f(x )=g (x )>0(a >0,a≠1)换元型f(ax )=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an =f (n )(2)数列的递推公式(3)数列的通项公式与前n 项和的关系an+1-an =dan =a1+(n -1)da ,A ,b 成等差2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an =a1qn _1a ,G ,b 成等比G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a >b b<aa >b ,b >c a>ca >b a+c>b+ca+b>c a>c -ba >b ,c >d a+c>b+da >b ,c >0 ac>bca >b ,c <0 ac<bca >b >0,c >d >0 ac<bda >b >0 dn>bn (n∈Z,n >1)a >b >0 >(n∈Z,n >1)(a -b )2≥0a ,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a >b (或a <b ),只需证明a -b >0(或a -b <0=即可(2)若b >0,要证a >b ,只需证明,要证a <b ,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
高中数学高考数学50条秒杀型公式与方法高中数学是高考的重要科目之一,其中有许多公式和方法需要掌握。
本文将介绍50条秒杀型公式和方法,供高中生备考高考使用。
一、代数1. 二次函数顶点坐标公式:对于一般式二次函数f(x)=ax^2+bx+c,顶点坐标为(-b/2a, -Δ/4a),其中Δ=b^2-4ac。
2. 一元二次方程求根公式:对于一元二次方程ax^2+bx+c=0,解为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 幂函数指数规律公式:(a^m)^n=a^(mn),(ab)^n=a^n*b^n,(a^n)^m=a^(nm)。
4. 对数换底公式:loga(b)=logc(b)/logc(a),其中a、b、c为正数且a≠15.平均值与方差的性质公式:n个数的平均值为平方和除以n,方差为平方和减去平均值的平方再除以n。
6. 二次差公式:an=a1+(n-1)d+(n-1)(n-2)/2!c,其中a1表示首项,d表示公差,c表示公差的变化量。
7.等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中Sn表示前n项和,a为首项,q为公比。
二、几何1.圆的周长和面积公式:圆的周长为2πr,面积为πr^2,其中r为圆的半径。
2.直角三角形勾股定理:直角三角形任意一条直角边的平方等于另外两条直角边的平方的和。
3. 三角形面积公式:三角形面积为底乘以高的一半,即S=(1/2)bh。
4. 三角形的正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为三角形的外接圆半径。
5. 三角形的余弦定理:c^2=a^2+b^2-2abcosC,其中a、b、c为三角形的边长,C为对应的角度。
6.直角三角形的高与斜边的关系公式:直角三角形的高为两直角边乘积除以斜边长。
7.正多边形内角和公式:正n边形的内角和为(n-2)180°。
上海高三数学知识点汇总在上海的高三学生中,数学是一门重要的学科,占据着高中阶段学业的重要部分。
为了帮助广大高三学生更好地复习,下面将对上海高三数学的知识点进行汇总和总结,以便学生们更好地掌握和回顾。
1. 数列与数列的通项公式:- 等差数列:数列中的每个数与它的前一个数的差相等。
通项公式为:An = A1 + (n-1)d。
- 等比数列:数列中的每个数与它的前一个数的比相等。
通项公式为:An = A1 * r^(n-1)。
- 斐波那契数列:数列中的每个数都是前两个数之和。
通项公式为:An = An-1 + An-2。
2. 函数与方程:- 一次函数:y = kx + b,其中k和b分别代表斜率和截距。
- 二次函数:y = ax^2 + bx + c,其中a、b、c分别代表二次项系数、一次项系数和常数项。
- 指数函数:y = a^x,其中a为底数,x为指数。
- 对数函数:y = loga(x),其中a为底数,x为真数。
- 一元二次方程:ax^2 + bx + c = 0,其中a、b、c为已知常数,求解x的值。
3. 三角函数:- 正弦函数:sin(x) = 对边/斜边。
- 余弦函数:cos(x) = 临边/斜边。
- 正切函数:tan(x) = 对边/临边。
- 余切函数:cot(x) = 临边/对边。
- 正割函数:sec(x) = 斜边/临边。
- 余割函数:csc(x) = 斜边/对边。
4. 几何知识点:- 直线与平面的关系:直线可以与平面相交、平行或位于平面内部。
- 平行线与垂直线:两线平行的条件为斜率相等,两线垂直的条件为斜率的乘积为-1。
- 三角形分类:根据边长和角度大小,可以将三角形分类为等边三角形、等腰三角形、直角三角形等。
- 同位角与内错角:同位角是指两条直线被一条直线相交所形成的一对内错角。
以上仅为上海高三数学知识点的汇总,仍然包含了大量的内容。
高三学生们可以结合自己的学习情况,有针对性地进行复习和巩固。
2011上海高三数学难点公式总结50条1.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n–2个.2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠;(2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.3.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m a f n =⎧⎨>⎩或()0()0f n a f m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .3.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b a c <⎧⎨-<⎩.4.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.B A ⊆⇔(2)必要条件:若q p ⇒,则p 是q 必要条件. A B ⊆⇔(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. B A =⇔ 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.6.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.7.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.8.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a m x f b m x ⇔+=-()()f a b m x f m x ⇔+-=.9.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f m x a =-与函数()y f b m x =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.10.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fk y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.11.几个常见的抽象函数原型(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 12.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2))0)(()(1)(≠=+x f x f a x f ,或f(x+a)=-f(x),则)(x f 的周期T=2a ;(3) )()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 12.设函数)0)((log)(2≠++=a c bx axx f m,记ac b42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验. 13.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤14.正弦、余弦的诱导公式212(1)sin ,sin ()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩15.三角函数的概念函数y=Asin(ϕω+x ),ϕ称为初相,ϕω+x =0的x 称为相位移,ϕω+x 称为相。
f=T116.面积定理 (1)111sin sin sin 222S a b C b c A ca B ===.(2)O A B S ∆=;(3)))()((c p b p a p p S ---=;(4)pr S =17. 简单的三角方程的通解sin (1)arcsin (,||1)kx a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.18.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做一组基. 19. a ·b 的几何意义数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积. .20. 三角形五“心”向量形式的充要条件设O 为A B C ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为A B C ∆的外心222O A O B O C ⇔== .(2)O 为A B C ∆的重心0O A O B O C ⇔++=.(3)O 为A B C ∆的垂心O A O B O B O C O C O A ⇔⋅=⋅=⋅.(4)O 为A B C∆的内心0a O A bO B cO C ⇔++= . (5)O 为A B C∆的A ∠的旁心a O A bO B cO C ⇔=+.L 练习:常见的几个“心”:∆ABC 所在平面α外一点P ,过P 作PO ⊥平面α,垂足为O ,连结PA 、PB 、PC ①若PA PB PC ,则O 是__________;②若PA PB PC ,∠ACB 90︒,则O 是__________; ③若PA PB PC ,AB AC ,则O 是__________; ④若PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则O 是__________;⑤若点P 到三边AB 、BC 、CA 的距离都相等,且点O 在ABC ∆内,则O 是__________; ⑥若PA 、PB 、PC 与平面ABC 所成的角相等,则O 是__________;⑦若二面角P AB C 、P BC A 、P CA B 相等,则O 是__________。
21.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-.(6)22a b a b a b+≤≤≤+22.已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±. 23. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.24.共线向量定理对空间任意两个向量a 、b(b ≠0 ),a ∥b ⇔存在实数λ使a=λb .P A B 、、三点共线⇔||A P A B ⇔A P t A B = ⇔(1)O P t O A t O B =-+.||A B C D ⇔A B、C D 共线且A B C D 、不共线⇔A B t C D = 且A B C D 、不共线.25.三线余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.26.异面直线间的距离||||C D n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 27点B 到平面α的距离||||A B n d n ⋅=(n 为平面α的法向量,A B 是经过面α的一条斜线,A α∈). 28.球的半径是R ,则其体积343V R π=,其表面积24S R π=.29 球与正四面体的组合体:棱长为a 的正四面体的内切球的半径为12a ,外接球的半径为4a .30.组合数的两个性质 (1)mn C =mn nC - ;(2) m n C +1-m nC =m n C 1+. 注:规定10=n C .31.组合恒等式(1)1121++++=++++r n r n r r r r r r C C C C C .(2)nn n n n n C C C C 2210=++++ . (3)1352412n n n n n n n C C C C C C -+++=+++= .(4)1321232-=++++n n nn n n n nCC C C .32. .(理)互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B). 33.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 34.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).35.数学期望.(理) 1122n n E x P x P x P ξ=++++36.方差:()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+37、积化和差公式.(理)①)]sin()[sin(21cos sin βαβαβα-++=⋅,②)]sin()[sin(21sin cos βαβαβα--+=⋅,③)]cos()[cos(21cos cos βαβαβα-++=⋅,④)]cos()[cos(21sin sin βαβαβα--+-=⋅。