光学与镀膜简介-1
- 格式:ppt
- 大小:1.51 MB
- 文档页数:41
1 .光学镜片参数注:参见附录1—常见镀膜类型3•常见镀膜类型(1)反射膜注:金属膜反射镜的特点a.金属膜反射镜一般反射特征曲线比较平坦,带宽,反射率高;b.金属膜反射镜的反射率不太受波长和入射角度变化的影响;c.金属膜反射镜膜表面的机械硬度不高,一般不可用通常方法擦拭,只能用包含有有机溶剂的棉棒擦拭;d.金属膜反射镜不适用于强光,激光能量大于1J/cm2时,请选用介质膜反射镜。
介质膜反射镜的特点a.介质膜反射镜是用交替重叠的多层膜的干涉原理制成;b.介质膜的反射率比较高,可接近100% (表中可见),膜的机械硬度高,耐清洁;c.介质膜反射镜与金属膜相比,其反射带宽窄,而且与入射角度密切相关;2.光学镀膜材料的技术指标注:来自中国光学光电子行业协会2008年光学薄膜培训班培训资料3.红外光学材料及性能参数4•光学镀膜常用基板常用基板有玻璃、陶瓷、光学晶体、光学塑料、金属;其中玻璃分为普通玻璃、无色、有色玻璃、特殊玻璃等。
无色玻璃分两大类(1)光学玻璃,物理学(结构和性能)上的高度均匀性,具有特定和精确的光学常数,具有可见区高透过、无选择吸收着色等特点,分为硅酸盐、硼酸盐、磷酸盐、氟化物和硫系化合物系列。
品种繁多,主要按他们在折射率(nD)-阿贝值(VD)中的位置来分类。
传统上nD>1.60, VD>50和nD<1.60, VD>55的各类玻璃定为冕(K)玻璃,其余各类玻璃定为火石(F)玻璃。
冕玻璃一般作凸透镜,火石玻璃作凹透镜;透明性是光学玻璃的最重要的性质,透光性指光线通过一系列棱镜和透镜后,其能量部分损耗于光学零件的界面反射而另一部分为介质(玻璃)本身所吸收。
前者随玻璃折射率的增加而增加,对高折射率玻璃此值甚大,如对重燧玻璃一个表面光反射损耗约6%左右。
因此对于包含多片薄透镜的光学系统,提高透过率的主要途径在于减少透镜表面的反射损耗,如涂敷表面增透膜层等。
而对于大尺寸的光学零件如天文望远镜的物镜等,由于其厚度较大,光学系统的透过率主要决定于玻璃本身的光吸收系数。
光学镀膜技术光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钞票上的防伪技术,皆能被称之为光学薄膜技术应用之延伸.倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性.今天为大家带来的是光学镀膜的应用原理.一、光学薄膜的定义光学薄膜的定义是:涉及光在传播路径过程中,附着在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或偏振分离等各特殊形态的光.光学薄膜系指在光学元件或独立基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变.故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性.一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺.所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工.日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品.但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布.湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品.二、薄膜干涉原理1、光的波动性19世纪60年代,美国物理学家麦克斯韦发展了电磁理论,指出光是一种电磁波,使波动说发展到了相当完美的地步.由光的波粒二象性可知,光同无线电波、X射线、一样都是电磁波,只是它们的频率不同.电磁波的波长λ、频率u和传播速率V三者之间的关系为:V=λu由于各种频率的电磁波在真空中的传播速度相等,所以频率不同的电磁波,它们的波长也就不同.频率高的波长短,频率低的波长长.为了便于比较,可以按照无线电波、红外线、可见光、紫外线、X射线和伽玛射线等的波长(或频率)的大小,把它们依次排成一个谱,这个谱叫电磁波谱.在电磁波谱中,波长最长的是无线电波,无线电波又因波长的不同而分为长波、中波、短波、超短波和微波等.其次是红外线、可见光和紫外线,这三部分合称光辐射.在所有的电磁波中,只有可见光可以被人眼所看到.可见光的波长约在0.76微米到0.40微米之间,仅占电磁波谱中很小的一部分.再次是X射线.波长最短的电磁波是y射线.光既然是一种电磁波,所以在传播过程中,应该表现出所具有的特征---干涉、衍射、偏振等现象.2、薄膜干涉薄膜可以是透明固体、液体或由两块玻璃所夹的气体薄层.入射光经薄膜上表面反射后的第一束光,折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光在薄膜的同侧,由同一入射振动分出,是相干光,属分振幅干涉.若光源为扩展光源(面光源),则只能在两相干光束的特定重叠区才能观察到干涉,故属定域干涉.对两表面互相平行的平面薄膜,干涉条纹定域在无穷远,通常借助于会聚透镜在其像方焦面内观察;对楔形薄膜,干涉条纹定域在薄膜附近.实验和理论都证明,只有两列光波具有一定关系时,才能产生干涉条纹,这些关系称为相干条件.薄膜的相干条件包括三点:两束光波的频率相同;束光波的震动方向相同;两束光波的相位差保持恒定.薄膜干涉两相干光的光程差公式为:Δ=ntcos(α)±λ/2式中n为薄膜的折射率;t为入射点的薄膜厚度;α为薄膜内的折射角;λ/2是由于两束相干光在性质不同的两个界面(一个是光疏介质到光密介质,另一个是光密介质到光疏介质)上反射而引起的附加光程差.薄膜干涉原理广泛应用于光学表面的检验、微小的角度或线度的精密测量、减反射膜和干涉滤光片的制备等.光是由光源中原子或分子的运动状态发生变化辐射出来的,每个原子或分子每一次发出的光波,只有短短的一列,持续时间约为10亿秒对于两个独立的光源来说,产生干涉的三个条件,特别是相位相同或相位差恒定不变这个条件,很不容易满足,所以两个独立的一般光源是不能构成相干光源的.不仅如此,即使是同一个光源上不同部分发出的光,由于它们是不同的原子或分子所发出的,一般也不会干涉.三、光学薄膜特点分类主要的光学薄膜器件包括反射膜、减反射膜、偏振膜、干涉滤光片和分光镜等等,它们在国民经济和国防建设中得到广泛的应用,获得了科学技术工的日益重视.例如采用减反射膜后可使复杂的光学镜头的光通量损失成十倍的减小;采用高反射膜比的反射镜可使激光器的输出功率成倍提高;利用光学薄膜可提高硅电池的效率和稳定性.最简单的光学薄膜模型是表面光滑、各向同性的均匀介质膜层.在这种情况下,可以用光的干涉理论来研究光学薄膜的光学性质.当一束单色光平面波入射到光学薄膜上时,在它的两个表面上发生多次反射和折射,反射光和折射光的方向有反射定律和折射定律给出,反射光和折射光的振幅大小则由菲涅尔公式确定.光学薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等.相关衍生的种类有光学级保护膜、窗膜等.光学薄膜的特点是:表面光滑,膜层之间的界面呈几何分割;膜层的折射率在界面上可以发生跃变,但在膜层内是连续的;可以是透明介质,也可以是吸收介质;可以是法向均匀的,也可以是法向不均匀的.实际应用的薄膜要比理想薄膜复杂得多.这是因为:制备时,薄膜的光学性质和物理性质偏离大块材料,起表面和界面是粗糙的,从而导致光束的漫反射;膜层之间的相互渗透形成扩散界面;由于膜层的生长、结构、应力等原因,形成了薄膜的各种向异性;膜层具有复杂的时间效应.反射膜一般可分为两类,一类是金属反射膜,一类是全电介质反射膜.此外,还有将两者结合的金属电介质反射膜,功能是增加光学表面的反射率.一般金属都具有较大的消光系数.当光束由空气入射到金属表面时,进入金属内的光振幅迅速衰减,使得进入金属内部的光能相应减少,而反射光能增加.消光系数越大,光振幅衰减越迅速,进入金属内部的光能越少,反射率越高.人们总是选择消光系数较大,光学性质较稳定的金属作为金属膜材料.在紫外区常用的金属膜材料是铝,在可见光区常用铝和银,在红外区常用金、银和铜,此外,铬和铂也常作一些特种薄膜的膜料.由于铝、银、铜等材料在空气中很容易氧化而降低性能,所以必须用电介质膜加以保护.常用的保护膜材料有一氧化硅、氟化镁、二氧化硅、三氧化二铝等.金属反射膜的优点是制备工艺简单,工作的波长范围宽;缺点是光损大,反射率不可能很高.为了使金属反射膜的反射率进一步提高,可以在膜的外侧加镀几层一定厚度的电介质层,组成金属电介质反射膜.需要指出的是,金属电介质射膜增加了某一波长(或者某一波区)的反射率,却破坏了金属膜中性反射的特点.。
不同光学镀膜方式的比较标题:不同光学镀膜方式的比较导言:光学镀膜是一种广泛应用于光学元件制造的技术,它能够改善光学元件的透过率、反射率和耐用性。
然而,有多种光学镀膜方式可供选择,每种方式都具有其特定的优势和限制。
本文将对不同光学镀膜方式进行比较,以帮助读者更好地了解它们之间的差异和适用情况。
第一部分:理论基础1. 光学镀膜概述:解释光学镀膜的定义和重要性,介绍其在光学元件中的各种应用。
2. 光学薄膜理论:简要说明光学镀膜是如何根据光学薄膜理论进行设计和制备的。
第二部分:主要光学镀膜方式的比较1. 全反射镀膜(AR镀膜):介绍全反射镀膜的原理和特点,强调其提高透过率和减少反射的优势。
- 结构:详细描述全反射镀膜的结构和材料。
- 优点:列举全反射镀膜的主要优点,例如增强透过率、降低表面反射和抗反射的广谱性。
- 缺点:讨论全反射镀膜的潜在限制,如制备复杂、灵敏度较高等。
- 应用:提供全反射镀膜在哪些领域和光学元件中的应用实例。
2. 反射镀膜:探讨反射镀膜的基本原理和优点,说明适用于反射镜等光学器件的特殊需求。
- 结构:阐述反射镀膜的材料和结构设计。
- 优点:介绍反射镀膜的关键优势,例如高反射率、耐久性等。
- 缺点:讨论反射镀膜可能存在的限制,如对光谱范围的限制。
- 应用:提供反射镀膜在哪些领域和光学元件中的典型应用。
3. 滤波镀膜:说明滤波镀膜的原理和应用,强调其用于光学滤波器等特殊光学元件的重要性。
- 结构:描述滤波镀膜的材料和层序设计。
- 优点:列举滤波镀膜的主要优势,例如选择性透过、阻止无用波长等。
- 缺点:探讨滤波镀膜的可能局限,如复杂制备和性能降低。
- 应用:提供滤波镀膜在光学滤波器和其他光学应用中的实际应用案例。
第三部分:光学镀膜方式的选择和发展趋势1. 选择光学镀膜方式的因素:介绍在选择特定光学镀膜方式时应考虑的关键因素,如使用环境、预算和性能要求。
2. 光学镀膜的未来发展方向:展望光学镀膜领域的最新趋势和技术,如纳米光学镀膜和多功能光学镀膜。
光学镀膜膜系类型-回复什么是光学镀膜?光学镀膜是指在光学元件的表面涂覆一层特定的薄膜,用于改变光的传播性质和增强特定光学性能。
薄膜的组成和结构在很大程度上决定了光学元件的反射、透射和吸收特性。
光学镀膜膜系类型主要有以下几种:单层膜系、多层膜系、分层膜系和激光镀膜膜系。
1. 单层膜系:单层膜系是指在基底上仅涂覆一层薄膜。
单层膜系通常用于增强或减弱特定波长的透射或反射。
例如,透明玻璃上涂覆一层反射膜,可使玻璃具有反射镜的作用。
单层膜系相对简单,适用于需求简单的光学元件。
2. 多层膜系:多层膜系是指在基底上涂覆多层薄膜。
多层膜系通过控制各层膜的厚度和折射率,使得光在不同层之间发生干涉,从而实现特定的光学效果。
多层膜系常用于光学滤光片、光学分束器等器件中。
多层膜系可以实现更加复杂的光学性能,如增强特定波段的透射、抑制某些波长的反射等。
3. 分层膜系:分层膜系是一种特殊的多层膜系,它由多个周期性的薄膜层组成。
每个周期包含若干分层单元,每个单元的膜厚和折射率均不同。
分层膜系能够在更宽的波段范围内实现较高的透过率和反射率。
它在激光技术、红外光学、太阳能电池等领域有着重要应用。
4. 激光镀膜膜系:激光镀膜膜系是一种特殊的多层膜系,用于提高光学元件对激光光束的透射和反射效果。
激光镀膜膜系通常由非对称的多层薄膜组成,可以选择性地增强或抑制特定波长的透射和反射,以满足激光技术的要求。
这些光学镀膜膜系类型在科学研究、工业生产和日常生活中都有广泛的应用。
它们的发展不仅提高了光学元件的光学性能,还推动了科学技术的进步。
未来,随着材料科学和光学技术的发展,我们有理由相信光学镀膜膜系类型将会越来越多样化,为人们带来更多惊喜。
光学镀膜膜系设计光学镀膜是一种将硅、氮、氧和金属等材料通过真空蒸发、溅射或化学反应等方式沉积在光学器件表面的制造技术,以改善或增强光学器件的传输、反射、吸收或分散光线的特性。
在现代光学领域中,光学镀膜已成为一种广泛应用的技术,可用于制造各种光学器件,如分光镜、反射镜、磨镜片、滤光片等。
在设计光学镀膜膜系时,需要考虑的因素较多,包括基片类型、材料选择、厚度分配、膜层结构和沉积方法等。
下面将对这些因素进行详细说明。
1、基片类型基片是进行光学镀膜的基础,因此选择合适的基片类型对光学器件的性能与质量至关重要。
一般来说,可以选择的基片有玻璃、晶片、塑料等。
玻璃基片是光学器件最常用的基片材料,其优点是表面平整、稳定、化学惰性好,不易变形与老化。
而晶片基片则适用于高精度镜片,如石英晶体、纳米结构膜等,其优点是在某些高精度应用中具有特殊的物理和化学性质。
塑料基片则通常用于低成本的光学器件制造。
2、材料选择光学镀膜所用的材料应满足以下条件:在适当的波长下吸收低、折射率与透明度、化学惰性和而且结构稳定。
常用于光学镀膜的材料包括置换锗、锗氧化物、氧化铝、氮化硅、氧化硼等非金属元素材料,以及金属元素材料,如铬、钴、铜、铝、银、金、钛等。
在选择材料时,还需要考虑其沉积方式、化学性质、物理特性以及与基片的化学反应等因素。
3、厚度分配膜层的厚度是光学器件性能的重要因素之一。
膜层的厚度分配应考虑到所需的光学性能和机械性质之间的平衡。
通常情况下,不同波长下的光波反射和透射性能要求不同,因此膜层的厚度分配也不同。
在设计膜层厚度分配时,应还需考虑复合反射膜的加工容差。
4、膜层结构膜层结构也是光学器件性能的重要因素之一。
膜层的结构可以通过控制沉积速度、厚度、材料选择、沉积温度、气氛等参数来实现。
最常用的膜层结构包括单层、多层、反射镜、吸收体和复合反射膜。
不同的膜层结构可以产生不同的光学特性,因此,需要根据实际需求选择适当的膜层结构。
5、沉积方法在光学镀膜膜系设计中,还需要考虑沉积方法的选择。
玻璃镀膜技术1. 简介玻璃镀膜技术是一种将薄膜材料附着在玻璃表面的工艺。
通过这种技术,可以改变玻璃的光学性质、机械性能和化学稳定性,从而满足不同应用领域对玻璃的需求。
玻璃镀膜技术广泛应用于建筑、汽车、光学仪器等领域。
2. 玻璃镀膜的分类根据功能和应用需求的不同,玻璃镀膜可以分为以下几类:2.1 光学镀膜光学镀膜是将一层或多层透明材料(如金属、氧化物等)附着在玻璃表面,以改变光的传播和反射特性。
常见的光学镀膜包括反射镀膜、抗反射镀膜和滤光镀膜等。
反射镀膜可提高玻璃的反射率,常用于太阳能电池板;抗反射镀膜可降低玻璃表面的反射率,提高透光性,常用于光学仪器和显示屏;滤光镀膜可选择性地吸收或反射特定波长的光线。
2.2 防护镀膜防护镀膜是通过在玻璃表面形成一层保护膜,提高其耐磨损、耐酸碱和耐腐蚀性能。
常见的防护镀膜有硅氧烷涂层、钛酸盐涂层和钢化玻璃等。
硅氧烷涂层可提高玻璃表面的亲水性,使水滴迅速滑落,常用于建筑幕墙和汽车前挡风玻璃;钛酸盐涂层可增强玻璃的硬度和耐刮擦性能,常用于手机屏幕保护膜;钢化玻璃通过加热和快速冷却处理,使其具有更高的强度和耐冲击性。
2.3 功能镀膜功能镀膜是为了赋予玻璃特定的功能而进行的镀膜。
常见的功能镀膜有导电镀膜、隔热镀膜和自洁镀膜等。
导电镀膜可使玻璃具有导电性,常用于触摸屏和电子显示器;隔热镀膜可降低玻璃的热传导性能,提高建筑物的能效;自洁镀膜可使玻璃表面具有良好的自清洁性,减少污染物的附着。
3. 玻璃镀膜技术玻璃镀膜技术主要包括物理气相沉积(PVD)和化学气相沉积(CVD)两种方法。
3.1 物理气相沉积(PVD)物理气相沉积是利用高能粒子或原子束将材料从固体源中剥离,并以高速冲击到玻璃表面形成涂层。
常见的物理气相沉积方法有溅射、电子束蒸发和离子束沉积等。
这些方法可以在真空环境下进行,控制沉积速率和厚度分布。
3.2 化学气相沉积(CVD)化学气相沉积是通过将蒸发的前体气体在表面发生化学反应,使材料沉积在玻璃表面。
光学镀膜机的原理
1.光学镀膜机的简介
光学镀膜机是一种专门用于光学设备上镀膜的设备。
主要工作原理是通过将目标器件置于真空室内,并利用各种物理和化学反应,将金属和非金属材料喷涂在器件表面,以增加其反射、透射和抗反演性能。
2.真空腔的重要性
在光学镀膜机中,真空腔是其中最重要的部分之一。
其作用是使目标物质置于完全的真空状态下,以便在不被氧气和其他外部空气中的物质污染的情况下进行喷涂和反应。
3.材料蒸发和离子镀膜的工作原理
在光学镀膜机中,有两种主要的镀膜方式:材料蒸发和离子镀膜。
具体操作如下:
材料蒸发:
将原材料引入到真空室中,将其蒸发,并在目标器件表面形成一层均匀的涂层。
离子镀膜:
在真空室中发生离子反应,使溅射的离子落在目标器件的表面上,形成一层均匀的表面膜。
4.微晶结构和压力对镀膜的影响
光学镀膜机中的涂层具有极微小的晶体结构,这些微结构使用压力来控制,以保证其具有如此小的尺度。
此外,当涂层被压缩时,其晶体结构会变形,从而影响其透射率和反射率等特性。
5.结论
光学镀膜机是一种高科技设备,可以应用于光学器件的制造和改进。
其工作原理基于物理和化学反应,主要通过材料蒸发和离子镀膜两种方式进行涂层加工。
最终产生的微晶结构和其抗压特性等,可以直接影响光学器件的功能与性能。