4-1光学薄膜系统设计
- 格式:ppt
- 大小:2.57 MB
- 文档页数:68
光学薄膜课程设计学生姓名学号指导老师年月增透膜1. 参数要求:在1300-1600nm波段中,设计一个垂直入射时透射率为99.9%的膜系。
2. 材料:ZrO2(H)、Al2O3(M)、MgF2(L)3. 基础膜系:G| M 2H L |A优化膜系:G| 0.100H 0.742M 2.198H 1.061L |A4. 曲线图:设计波长为1450nm,采用针式优化。
5. 膜厚控制方法:采用光控的方法对膜厚进行控制。
高反膜1.参数要求:在1300-1600nm波段中,设计一个垂直入射时反射率为99.9%的膜系。
2.材料:TiO2(H)、SiO2(L)3.基础膜系:G| (HL)^12 H |A优化膜系:G| (HL)^12 0.792H |A4.曲线图:设计波长为1450nm。
5.膜厚控制方法:采用光控的方法对膜厚进行控制。
分光膜1.参数要求:在1300-1600nm波段中,设计一个45度角入射时透射率为50%的膜系。
2.材料:TiO2(H)、SiO2(L)3.基础膜系:G| (HL)^4 |A优化膜系:G| 0.382H 0.512L 0.873H 0.942L 0.972H 1.382L 0.721H 0.980L |A 4.曲线图:设计波长为1450nm,入射角为45度。
5. 膜厚控制方法:采用光控的方法对膜厚进行控制。
短波通干涉截止滤光片1.参数要求:光线垂直入射时,在1300-1450nm波段通过,透射率为99%;在1450-1600nm波段截止。
2. 材料:TiO2(H)、SiO2(L)3.基础膜系:G| 0.87LHL (0.5L H 0.5L)^18 0.7LHL |A优化膜系:G| 1.110L 1.292H 1.132L 0.900H 1.116L 1.020H 1.055L (HL)^14 1.000H1.170L 0.911H 1.192L 0.987H 0.619L |A4.曲线图:设计波长为1653nm。
一、实验目的1. 理解光学膜的基本原理和作用;2. 掌握光学膜的制作方法;3. 通过实验验证光学膜的特性;4. 分析光学膜在光学系统中的应用。
二、实验原理光学膜是一种具有特定光学性能的薄膜,其主要作用是反射、透射和偏振。
光学膜的种类繁多,包括增透膜、反射膜、偏振膜等。
本实验主要研究增透膜和反射膜的制作方法及特性。
1. 增透膜:增透膜能够减少光在光学元件表面的反射,提高光的透射率。
其原理是利用不同厚度、不同折射率的薄膜对光的干涉现象,使反射光相互抵消,从而减少反射。
2. 反射膜:反射膜能够增加光在光学元件表面的反射,提高光的反射率。
其原理与增透膜类似,也是利用干涉现象,但要求反射光相互加强。
三、实验仪器与材料1. 实验仪器:光学膜制备系统、紫外-可见光分光光度计、干涉仪、薄膜厚度测量仪等;2. 实验材料:光学玻璃基板、光刻胶、抗蚀剂、清洁剂、光刻机、蒸发源、真空系统等。
四、实验步骤1. 光刻胶涂覆:将光学玻璃基板放入光刻机中,涂覆一层光刻胶,使其均匀覆盖在基板上;2. 光刻:利用光刻机将设计好的图形转移到光刻胶上,形成光刻胶图形;3. 抗蚀:将涂覆光刻胶的基板放入抗蚀剂中,浸泡一段时间,使光刻胶图形部分溶解,形成抗蚀图形;4. 蒸发沉积:将涂覆抗蚀图形的基板放入蒸发源中,通过真空系统使蒸发源蒸发材料,沉积在抗蚀图形上,形成光学膜;5. 洗除抗蚀剂:将沉积光学膜的基板放入清洁剂中,洗除未反应的抗蚀剂,得到光学膜;6. 薄膜特性测试:利用紫外-可见光分光光度计、干涉仪、薄膜厚度测量仪等仪器对光学膜进行测试,分析其光学性能。
五、实验结果与分析1. 增透膜实验结果:通过实验,成功制备了增透膜,其透射率提高了约30%。
测试结果显示,增透膜在可见光范围内的透射率较高,符合实验要求。
2. 反射膜实验结果:通过实验,成功制备了反射膜,其反射率提高了约80%。
测试结果显示,反射膜在可见光范围内的反射率较高,符合实验要求。
四分之一波片薄膜一、引言四分之一波片(quarter-wave plate)是一种光学元件,能够将一束线性偏振光转换为圆偏振光,或者将圆偏振光转换为线性偏振光。
在薄膜制备领域,四分之一波片薄膜因其独特的光学性能而备受关注。
本论文将对四分之一波片薄膜的原理、制备及应用进行详细探讨。
二、四分之一波片薄膜的原理线性偏振光在通过四分之一波片后,其偏振方向将发生45°旋转。
这是因为四分之一波片具有双折射性质,使得光在波片内部产生相位延迟。
当这个相位延迟为λ/4(λ为光的波长)时,出射光将变为圆偏振光。
反之,当圆偏振光通过四分之一波片时,其偏振状态也会发生旋转。
三、四分之一波片薄膜的制备制备四分之一波片薄膜的方法有多种,包括物理气相沉积(PVD)、化学气相沉积(CVD)以及溶胶-凝胶法等。
这些方法各有优缺点,适用于不同材料和不同应用场景。
1. 物理气相沉积(PVD):PVD技术可以制备出高质量的四分之一波片薄膜,但制备过程需要在高真空条件下进行,且制备周期较长。
2. 化学气相沉积(CVD):CVD技术适用于大面积制备,且制备周期较短。
但该技术需要较高的温度和反应气体,可能对基底材料产生影响。
3. 溶胶-凝胶法:溶胶-凝胶法是一种低温制备方法,适用于制备大面积薄膜。
但该方法需要经过干燥和热处理过程,容易产生裂纹和孔洞。
四、四分之一波片薄膜的应用四分之一波片薄膜因其独特的光学性能,在许多领域都有广泛的应用。
以下是一些主要的应用领域:1. 光学通信:在光纤通信中,四分之一波片可以用于调制信号光,提高通信系统的性能。
2. 光学传感:四分之一波片薄膜可以用于检测微小的光学变化,例如温度、压力和浓度等。
3. 光学显示:在液晶显示中,四分之一波片可以用于控制光的方向和偏振状态,提高显示图像的质量。
4. 光学仪器:在显微镜、望远镜等光学仪器中,四分之一波片可以用于改善成像质量。
5. 太阳能利用:在太阳能电池中,四分之一波片可以用于提高光的吸收效率。
欧阳物创编 2021.02.07TFCalc薄膜设计软件功能强大★TFCalc是一个光学薄膜设计和分析的通用工具,这里有按顺序排列介绍了TFC的功能:吸收、有效镀膜、角度匹配、双锥形的穿透、黑体光源、色彩优化、约束、继续优化目标、派生目标、探测器、散射公式、电场强度、同等折射率、同等堆叠、获得材质、全局优化、组优化、发光体、膜层敏感性、局部优化、多重环境、针优化、光学监控、光学密度、相位移动、psi、发光分布、折射率的确定、反射、敏感度分析、堆叠公式、综合、穿透率、隧道效应、可变材料。
创新★TFCalc 软件是膜系设计软件中提供创新方法的领导者。
例如,TFCalc 允许活动材料-材料的折射率随着外部影响而改变。
这个功能是其它商业软件没有的功能。
容易使用★TFCalc 是标准的windows和苹果机程序;薄膜设计工程师利用菜单、对话框和窗口来输入并显示结果。
★Software Spectra 努力让TFCalc软件尽可能的容易使用,特别是对仅仅偶尔使用软件的工程师来说这一点更加重要。
TFCalc 软件包中包含了大量的设计实例。
价格★TFCalc 软件每套售价1.6万元人民币,包含一年的升级和技术支持服务。
量大和教学会有一定的折扣优惠。
多种平台TFCalc 可以在以下计算机和操作系统下工作:★运行windows 3.1 ,3.11,95,98,2000,XP 的PC。
★运行System 7 或更新版本的苹果电脑。
★TFCalc 所输出的文件格式兼容这两个平台,让你和同时可以共享数据。
TFCalc3.80功能概要TFCalc 是一款具有多种强大功能的软件。
这个概要并没有列出它的所有功能。
要想了解TFCalc 的所有功能,可以阅读TFCalc 用户手册。
另外一种学习TFCalc 软件的方法就是使用它的演示版本。
薄膜★基层的两侧可以达到5000层★膜层可以手动的添加,也可以使用堆叠公式自动创建,例如(HL)^5 1.2(HL)^5★膜层可以具有可变的折射率★膜层可以是两种材料的混合体★膜层的厚度可以用物理的或波长的四分之一作为厚度输入值★膜层的厚度可以被束缚★厚度可以根据角度值做调整★一个膜层可以被等效膜层的(HLH)或者(LHL)的堆叠所代替★膜层可以成组的对称保存或者按顺序移动★折痕的镀膜也可以模拟★膜层可以由活动性和增益性材料组成分析★计算反射、穿透、吸收、光学密度、损耗、相位改变、psi、组延迟(GD)、组延迟散射(GDD)、TOD 和电场强度★计算反射或穿透颜色(CIE 和LAB)★计算连续膜层的等价折射率(Herpin)★计算反射、投射、吸收、光学密度、损耗、相位改变和正常生产中的公差(厚度和折射率)的敏感度★计算膜层的敏感度★计算反射,穿透、吸收、密度和用户自定义的损耗平均锥角(也叫做biconical)★交互式的分析可以用来决定影响表现的参数的改变★使用交互式的功能可以创造生动的结果★生产分析可以让用户决定一个膜层的生产★Muller 或Abeles相位改变的定义都可以选定★模拟光的监控器的输出优化★三个局部方法:可变的公制、梯度和单一的★全局搜索可以用来找到最佳的镀膜设计★针优化(带有隧道效应的)用来针对综合的非寻常设计★厚度和折射率都可以设为变量★膜层的厚度可以在优化过程中被束缚★背离和折射率的轮廓可以在优化过程中显示出来★灵活的评价函数★同时地优化前后层★优化组因子★敏感度也可以被优化★零厚度的层看可以能在优化过程中自动地移出★可以输入照明和探测功能,这样对于膜层在特定环境下的优化成为可能★产品的R*T 能够被优化★膜层两侧的表现都可以被优化★锥角平均值可以被优化★极端快速量可以被优化(GD、GDD、TOD)★使用原型方法自动设计带通滤波器优化目标★优化目标可以为反射、穿透、吸收、密度、颜色、照明、相位移动、组延迟、组延迟散射、TOD 和任意波长、偏振以及角度的psi★目标可以是不连续的(单一波长)、连续的(一段波长)或者锥角平均(对于锥形角)★这些量的第一、第一和第三派生都可以作为变量★目标可以手动的、一般情况是自动的或者从文件读取★一般情况下目标是波长、波数或者对数的形式★目标值可以是不等的★最多可以设定5000个目标★针对多种环境的目标★等波纹的目标★目标值可以用dB的形式输入结果★结果可以用数字和图片的方式显示★所有的表格和图片都可以打印★结果可以保存到文件中,让其他程序使用★结果可以灵活的保存★五个膜系设计的结果可以同时显示在一张图片中★两个结果,例如反射和投射可以同时在一张图片中涵盖★屏幕上有一个指针,用户可以利用它在图片上读出数值★对于随机的结果可以计算出统计值光学数据★材料、基质、光源、探测器和辐射文件的数值没有限制★折射率可以用表格或散射公式的形式输入★对于基质,内部穿透率可以读出★使用填写功能(interpolation)可以增加丢失的N 或K 数值★折射率可以从频谱或椭圆偏振光中计算出★材料和基质数据可以产生吸收和散射★一个膜层的反射和投射可以保存为一个发光体★每个文件都可以保存注释★数据可以从文本文件中读取★可以建立黑体发光体★数据文件可以保存为苹果电脑和IBM-PC的兼容格式镀膜文件★包含膜层、目标、注释、可变材料等等的所有信息★方便的将一个膜层的部分复制到其它文件中★镀膜文件兼容苹果电脑和IBM-PC精确而快速★所有的计算都是16位浮点算法★在优化过程中,TFCalc可以计算50万层/接近计算机的最好水平用户界面★容易使用,标准Windows 或苹果用户界面★和Windows 一样的菜单、对话框、表格★非常容易编辑和重新计算TFCalc 3.80的更新重要的新功能★交互式的分析★灵活的保存★生产分析★极限快速表现计算★分析参数的交互式设定★等效膜层的散射★敏感度分析:各折射率独立变化★带锥角的敏感度分析★极限快速量的优化★锥角目标优化★带通滤波器的自动设计★材料的混合★结构参数存储在每一个设计中有很多升级在本文档中没有提及,这里提到的更新只是针对Windows版本的;除了以下bug被修正外,苹果电脑版本没有其它改变。
陬e,§×Ht{瓦j,l麒;H,同时利用式(2-9),我们可以得到§×Ht—NE(2—12)式(2一lO)-每(2一il)孛,§』(j一茗,y,z)为,坐标辘方淘主静攀谴矢爨,南与茸,分羽为波矢方向罄位矢量§与磁场强度矢量H在J轴方向上的分量。
间理,可以得到ⅣG×E)-H(2-13)式(2-12)与(2-13)称为光学导纳方程,在计算光学膜系的光学往质狠有用处[1蜘。
2。
{。
3先波在介蒺券西主静菠菇等辑射在光学骧系孛葸存农若手余震爨甏,膜蓉豹光举蛙鬟每毙波在务会矮葵嚣上的反射和折射规律有关。
现考虑光波自复折射率为^『0的介质入射到该介质与男一介质(复折射率为Ⅳ1)的界面时的反射和折射过程。
酋先讨论光波豢直入射于界面的情形。
j琏:时,光波的传播方向§垂喜于界筒,两电场强度矢量E与磁场强度矢量珏臻乎嚣予截瑟;在No分震中霄歪巍雩亍波(壤,H:)与反向行波(Ei,H;),在Ⅳl介质中仅有征向行波(联,H;),如图2-1所永。
根据静纳方程(2-13),有黼2-1正入射的光波在界爱反射与折射豕意墼l》以免雎2.1.4光学薄膜的特征矩阵瑶考纛光波在一层簿貘中懿传撵逡疆。
鼗对,涉及蘩3季争不闲分覆露2令余震界面。
如图2-3所示,设光波自N。
介质入射到界颟S们上,在界面s01上反射与折射,透过界面S01的光波在Ⅳ。
介质膜层(几何厚度为d,)内传播,然后在界颟s12上反袈积掰菱砉,最后遴入密封赍蒺甄。
在入射介质Ⅳ。
内,电磁场E与H包括了正向杼波和反向行波,即E。
=E:+E3,H。
一H:+H;。
在介质N,la,同样有正向行波与殿向行波。
记谯介质M内嚣接近奏瑟Sol豹忑行滚为嚣§与珏毳,接主葭赛瑟Sol的爱荦亍波为E晶与飘磊;接近器鬣s12的正行波为E矗与H之·接近界面¥12的反行波为E而与H五。
在H{射介质Ⅳ2内,仅有正行波,即&-E;,珏:=H:。
赵存华现代光学设计实例
1. 高分辨率显微镜设计,赵存华在显微镜设计方面做出了重要
贡献。
他提出了一种基于全息光学原理的高分辨率显微镜设计方法,通过使用特殊的光学元件和优化的光路设计,实现了超高分辨率的
显微观测效果。
2. 光学成像系统设计,赵存华在光学成像系统设计方面也有很
多研究成果。
他研究了光学成像系统中的畸变、像差等问题,并提
出了一些优化方法,使得成像系统的质量得到了显著提高。
他的设
计方法被广泛应用于高清晰度摄像机、望远镜等光学成像设备中。
3. 光学器件设计,赵存华还在光学器件设计方面做出了一些重
要工作。
他设计了一种高效的光学透镜,使得光学器件的传输效率
得到了大幅度提升。
他的设计方法不仅在光学通信领域有广泛应用,还在光学传感器、激光器等领域发挥了重要作用。
4. 光学薄膜设计,赵存华在光学薄膜设计方面也有一些研究成果。
他研究了光学薄膜的反射、透射等特性,并提出了一种优化设
计方法,使得光学薄膜的光学性能得到了提升。
他的设计方法被应
用于光学镀膜、光学滤波器等领域。
总而言之,赵存华在现代光学设计领域做出了许多重要的贡献。
他的研究成果不仅在学术界产生了广泛影响,也在实际应用中得到
了广泛应用。
他的设计方法和理论成果为光学设备的性能提升和技
术进步做出了重要贡献。