数值分析作业答案
- 格式:doc
- 大小:2.12 MB
- 文档页数:30
数值分析第一次作业及参考答案1. 设212S gt =,假定g 是准确的,而对t 的测量有0.1±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。
解:2**22211()0.122()0.10.2()1122,(),().r r e S S S gt gt gt e S gt e S t gt gt t e S e S =-=-====∴↑↑↓2. 设2()[,]f x C a b ∈且()()0f a f b ==,求证2''1max ()()max ().8a x ba xb f x b a f x ≤≤≤≤≤-解:由112,0),(,0)()()0()00.a b L x l x l x =⨯+⨯=(两点线性插值 插值余项为"111()()()()()()[,]2R x f x L x f x a x b a b ξξ=-=--∈ [,].x a b ∴∀∈有12211()()"()()()max "()[()()]221()()1max "()[]()max "().228a x ba xb a x b f x R x f x a x b f x x a b x x a b x f x b a f x ξ≤≤≤≤≤≤==--≤---+-≤=-21max ()()max "()8a xb a x b f x b a f x ≤≤≤≤∴≤-3. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1),(1)用Lagrange 插值求二次插值多项式。
(2)构造差商表。
(3)用Newton 插值求二次插值多项式。
解:(1)Lagrange 插值基函数为0(1)(2)1()(1)(2)(01)(02)2x x l x x x +-==-+-+-同理 1211()(2),()(1)36l x x x l x x x =-=+ 故2202151()()(1)(2)(2)(1)23631i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑(2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为0112155(1)[,]4,[,]20(1)12f x x f x x ---==-==-----0124(2)[,,]102f x x x ---==-22()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+4. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?解:()40000(),(),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及(3)200044343()()[(()]()[()]3!(1)(1)(1)(1)3!3!.(4,4).6f R x x x h x x x x h t t t e t h th t h e h e ξξ=----+-+≤+⋅⋅-=≤∈-则436((1)(1)100.006.t t t h --+±<< 在点 得5. 求2()f x x =在[a,b ]上的分段线性插值函数()h I x ,并估计误差。
一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。
第 1 页/共 22 页1. 正方形的边长大约为100cm ,应怎样测量才干使面积误差不超过1cm 22. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m,1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.3.为使π的相对误差小于0.001%,至少应取几位有效数字?4.设x的相对误差界为δ,求n x的相对误差界.5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?第 3 页/共 22 页6. 已知333487.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并预计截断误差.7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并预计误差.8. 已知16243sin ,sin πππ===请用抛物插值求sin50的值,并预计误差9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x第 5 页/共 22 页10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式.11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,试用二次牛顿插值多项式计算(2.15)f 的近似值,并研究其误差12. 设],[)(b a x f 在上有四阶延续导数,试求满意条件)2,1,0()()(==i x f x P i i 及)()(11x f x P '='的插值多项式及其余项表达式.13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944⎡⎤⎢⎥⎣⎦,上的三次埃尔米特插值多项式()P x ,使它满意11()()(0,1,2),()(),i i P x f x i P x f x ''===并写出余项第 7 页/共 22 页表达式.14. 设],1,0[,23)(2∈++=x x x x f 试求)(x f 在]1,0[上关于,,1{,1)(x span x =Φ=ρ}2x 的最佳平方逼近多项式15.已知实验数据如下:用最小二乘法求形如y=a+bx2的拟合曲线,并计算均方误差.16.已知数据表如下第 9 页/共 22 页x i 1 2 3 4 5 y iωi4 4.56 8 8.5 2 1 3 1 1试用最小二乘法求多项式曲线与此数据组拟合17. .1)(},1{span ,1]41[)(的最佳平方逼近多项式中的关于上的在在求==Φ=x x x x f ρ18. 决定求积公式⎰++≈10110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A , 使其代数精度尽量高,并指出所决定的求积公式的代数精度.19. 用复化辛普森公式计算积分⎰=10dx e I x , 问区间[0,1]应分多少等分才干使截断误差不超过?10215-⨯第 11 页/共 22 页20. 利用下表中给出的数据,分离用复化梯形公式和复化辛甫生公式计算定积分dx x I ln 21⎰=的近似值(要求结果保留到小数点后六位)21. 用复化梯形公式和复化辛甫生公式计算积分⎰=6.28.1)(dx x f I ,函数)(x f 在某些节点上的值如下图:(本题共14分)22. 决定公式⎰+≈101100)()()(x f A x f A dx x f x 的系数1010,,,x x A A ,使其具有最高代数精度23. 决定求积公式⎰++≈1110)1()(32)0()(f A x f f A dx x f 中的待定参数110,,A x A ,使其代数精度尽量高,并指出所决定的求积公式的代数精度第 13 页/共 22 页24.用LU 分解法求解以下方程组 (10分)123123142521831520x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭25.用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛8892121514131615141321x x x26. 用LU 分解法求解以下方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛542631531321321x x x27. 设方程组b Ax =,其中⎪⎪⎪⎭⎫⎝⎛-=220122101A ,Tb ⎪⎭⎫ ⎝⎛-=32,31,21, 已知它有解Tx ⎪⎭⎫⎝⎛-=0,31,21,若右端有小扰动61021-∞⨯=bδ,试预计由此引起的解的相对误差.第 15 页/共 22 页28. 设方程组b Ax =,其中212 1.0001A -⎛⎫= ⎪-⎝⎭,11.0001b -⎛⎫= ⎪⎝⎭,当右端向量b 有误差00.0001δ⎛⎫= ⎪⎝⎭b 时,试预计由此引起的解的相对误差(用∞范数计算)29. 给定b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111a a a a a a A 证实:(1) 当121<<-a 时,A 对称正定,从而GS 法收敛. (2) 惟独当2121<<-a 时,J 法收敛.30. 对于线性方程组⎪⎩⎪⎨⎧-=+-=-+=+1242043 16343232121x x x x x x x ,列出求解此方程组的Jacobi 迭代格式,并判断是否收敛。
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析考试题和答案一、单项选择题(每题2分,共20分)1. 在数值分析中,插值法的主要目的是()。
A. 求解线性方程组B. 求解非线性方程C. 构造一个多项式来近似一个函数D. 求解微分方程答案:C2. 线性方程组的高斯消元法中,主元为零时,应采取的措施是()。
A. 停止计算B. 回代求解C. 转置矩阵D. 行交换答案:D3. 以下哪种方法不是数值积分方法()。
A. 梯形规则B. 辛普森规则C. 牛顿法D. 复合梯形规则答案:C4. 以下哪种方法用于求解非线性方程的根()。
A. 欧几里得算法B. 牛顿迭代法C. 高斯消元法D. 线性插值法答案:B5. 在数值分析中,最小二乘法主要用于()。
A. 求解线性方程组B. 求解非线性方程C. 曲线拟合D. 微分方程数值解答案:C6. 以下哪种方法不是数值微分方法()。
A. 前向差分B. 后向差分C. 中心差分D. 欧拉方法答案:D7. 以下哪种方法用于求解常微分方程的初值问题()。
A. 欧拉方法B. 龙格-库塔方法C. 牛顿迭代法D. 高斯消元法答案:B8. 在数值分析中,矩阵的特征值问题可以通过()方法求解。
A. 高斯消元法B. 幂迭代法C. 牛顿迭代法D. 梯形规则答案:B9. 以下哪种方法不是数值稳定性分析中的方法()。
A. 绝对稳定性B. 相对稳定性C. 条件数D. 牛顿法答案:D10. 在数值分析中,条件数用于衡量()。
A. 算法的效率B. 算法的稳定性C. 算法的准确性D. 算法的复杂度答案:B二、填空题(每题2分,共20分)1. 在数值分析中,插值多项式的次数最高为______,其中n是插值点的个数。
答案:n-12. 线性方程组的高斯消元法中,如果某行的主元为零,则需要进行______。
答案:行交换3. 梯形规则的误差与被积函数的______阶导数有关。
答案:二4. 牛顿迭代法中,每次迭代需要计算______。
答案:函数值和导数值5. 最小二乘法中,残差平方和最小化时,对应的系数向量是______。
]第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1若误差限为5105.0-⨯,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
3已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。
4设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算)~解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
(误差限的计算)解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ绝对误差限为πππ252.051.02052)5,20(),(2=⨯⋅+⨯⋅⋅⋅≤-v r h v相对误差限为%420120525)5,20()5,20(),(2==⋅⋅≤-ππv v r h v 6设x 的相对误差为%a ,求nx y =的相对误差。
部分习题参考答案习题一1. 分别有3位、5位与4位有效数字2. 分别有5位、3位、4位与3位有效数字3. 有3位有效数字; 绝对误差为 -0、0012;相对误差-0、0005570514. (1) (2)(3)6、提示:注意字长为8位得计算机上得机器数系得特点与计算机对数得接收与运算处理。
7、提示:通过证明进行说明,这里 8、,不稳定 9、最好10、采用j 从10000到2得顺序相加,或通过进行化简计算。
11、本题有递推公式得出得就就就是。
算法1、2、For k=n-1,n-2,…,1,0 做12、提示:仿照例1、9做之。
习题二 2、提示:3、取迭代函数讨论之。
4、由确定k,迭代次数59、5、迭代公式及区间为,数列得极限值。
6、x 3=0、567143 7、,用New to n迭代公式及定理6做,根1、030 8、两个根: ;9、取,当时,取区间,用定理6做,当时,由做转换讨论。
极限为 11提示:由可得,或由用定理2、4 12、()()()()()()()()()()()()()()()()()222******1*22*****1*2***2*3(),()2'()2!()'()'()2'()'()'()2()'()2k k kk k k k k k k k k k k k kk k k k k k f f y x x x f y f x f x y x y x f x f x f f y x x y x y x y x y x f x f x f x y x f f x f x y x f x y x f x x f f x ξξξξξξ+'''''-=-=+-+-'''∴-=--=------''⎛⎫'=--- ⎪⎝⎭-''''=-+()()()()()2*13*121*32()2'()()()()4'()2'()k k kk k k f x x f x x xf f f f x x f x f x ξξξξξ⎛⎫''⨯- ⎪⎝⎭''-''''⎛⎫''=+- ⎪⎝⎭13、提示:借助代入中约化。
数值分析作业答案【篇一:《数值分析》作业参考答案 2】>一. 选择题1. a; 2.b; 3.b; 4.d; 5.c; 6.d; 7.c; 8.b; 9.d; 10.c; 11.b;12.a; 13.a; 14.c; 15.a; 16.b; 17.d; 18.a19.d,20.c,21.a,22.d,23.c,24.c. 二. 填空题1. 3,3,3 ;2. 1,2/3;3. 100!2^100 ;4. (-1 ,1);5.x?cosx1; 6. g(x)?x?,2;1?sinx(x0?x1)(x0?x2)?(x0?xn)7. (-1, 1); 8. x; 9. 4 ; 10. 5,9 ; 11. xn?1?31c(xn?), 2; 2xnb?a1x2?112. x?x?1 ; 13. 10/9, 4; 14. 10, 55, 550; 15. b?16.17.33318.?三.1. p(x)?x2?2x?12. p(x)?f(x)3. 2.a?c?a?b11?i1?3i219.2x?x20. a? . ,,324429121016, 代数精确度为5 ,b?,a?9953.证明:cond(aa)?||aa||?||(aa)?1|| 设??max{aa的特征值的模},??max{(a?1)a?1的特征值的模},则上式=????||a||2?||a?1||2?(cond(a))2?1???24.1. (12分)l???????2?1??1???????1????0?2u?, , x??????4?1?1???????0??1??????1?31?2. (8分)seidel收敛,因为a 实正定对称阵. 迭代格式(k)?x1(k?1)?(2?x2)/2?(k?1)(k)?(x1(k?1)?x3)/2?x2?(k?1)(k?1)(k)x?(?2?x?x24)/2?3(k?1)(k?1)?x4?(1?x3)/2?12??35. p(x)??2x?1,余项cosx?p2(x)?|x(x?|?6.?6254*6426. 证明:当a?0时,结论显然成立;|ytax|当a?0时,因|yax|?||y||2||a||2||x||2,故 sup?||a||2;x?0,y?0||x||2||y||2t又aa是实对称矩阵,故存在正交阵p?(p1,p2,?,pn)t??1???tt?使得paap?d???, pi是特征值?i对应的特征向量。
目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。
第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
6、在44≤≤-x 上给出xe xf =)(的等距节点函数表,若用二次插值求e x 的近似值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有),(),)()()((!31)(11112+-+-∈---'''=i i i i i x x x x x x x x f x R ξξ式中.,11h x x h x x i i +=-=+-3434114239313261))()((max 61)(11h e h e x x x x x x e x R i i i x x x i i =≤---=+-≤≤+-令6341039-≤h e 得00658.0≤h插值点个数12178.12161)4(41≤=---+N 是奇数,故实际可采用的函数值表步长006579.0121681)4(4≈=---=N h8、13)(47+++=x x x x f ,求]2,,2,2[710 f 及]2,,2,2[810 f 。
解:由均差的性质可知,均差与导数有如下关系:],[,!)(],,,[)(10b a n fx x x f n n ∈=ξξ 所以有:1!7!7!7)(]2,,2,2[)7(71===ξf f 0!80!8)(]2,,2,2[)8(81===ξf f15、证明两点三次Hermite 插值余项是),(,!4/)())(()(1212)4(3++∈--=k k k k x x x x x x fx R ξξ并由此求出分段三次Hermite 插值的误差限。
证明:利用[x k ,x k+1]上两点三次Hermite 插值条件)()(),()()()(),()(11331133++++'=''='==k k k k k k k k x f x H x f x H x f x H x f x H 知)()()(33x H x f x R -=有二重零点x k 和k+1。
设2123)())(()(+--=k k x x x x x k x R确定函数k(x):当k x x =或x k+1时k(x)取任何有限值均可;当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数2123)())(()()()(+----=k k x x x x x k t H t f t g显然有)(,0)(0)(,0)(,0)(11='='===++k k k k x g x g x g x g x g在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得0)(,0)(21='='ηηg g在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈,),(212ηηη∈k 和),(123+∈k k x ηη使得0)()()(321=''=''=''k k k g g g ηηη再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得0)()4(=ξg而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到)(),(!41)(1,)4(+∈=k k x x f t k ξξ 推导过程表明ξ依赖于1,+k k x x 及x综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限:记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。
nab h n k kh a x k -==+=),,1,0(, 在区间[x k ,x k+1]上有212)4(212)4()()(max )(max !41!4/)())(()()(1+≤≤≤≤+--≤--=-+k k x x x bx a k k h x x x x x f x x x x f x I x f l k ξ而最值)(,161)1(max )()(max 4422102121sh x x h h s s x x x x k s k k x x x l k +==-=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4x f h x I x f bx a h ≤≤≤-16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,0)1()1(='=p p ,1)2(=p 。
解:满足0)0()0(33='=H H ,1)1()1(33='=H H 的Hermite 插值多项式为)1,0(10==x x322213332010)1(01001121)]()()()([)(x x x x x x x x H x a x H x H j j j j j -=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---='+=∑=β设223)1()()(-+=x Ax x H x P ,令1)2(=P 得41=A 于是222232)3(41)1(412)(-=-+-=x x x x x x x P 第3章 曲线拟合的最小二乘法解:经描图发现t 和s 近似服从线性规律。
故做线性模型{}t span bt a s ,1,=Φ+=,计算离散内积有:()611,1502==∑=j ,()7.140.59.30.39.19.00,15=+++++==∑=j j t t()63.530.59.30.39.19.00,222222502=+++++==∑=j j t t t()280110805030100,150=+++++==∑=j js s()10781100.5809.3500.3309.1109.000,5=⨯+⨯+⨯+⨯+⨯+⨯==∑=jj j s t s t求解方程组得:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛107828063.537.147.146b a 855048.7-=a ,253761.22=b运动方程为:t s 253761.22855048.7+-= 平方误差:[]2252101.2)(⨯≈-=∑=j j jt s sδ用最小二乘法求形如2bx a y +=的经验公式,并计算均方差。
解: {}2,1x span =Φ,计算离散内积有:()511,142==∑=j ,()53274438312519,122222422=++++==∑=j j x x()72776994438312519,444444422=++++==∑=j jx x x()4.2718.973.730.493.320.19,14=++++==∑=j jy y()5.3693218.97443.73380.49313.32250.1919,22222422=⨯+⨯+⨯+⨯+⨯==∑=j j jy xy x求解方程组得:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛5.3693214.2717277699532753275b a 972579.0≈a ,05035.0=b所求公式为:205035.0972579.0x y+=均方误差:[]1226.0)(2124≈⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-=∑=j jj y x y δ 第4章 数值积分与数值微分1、确定下列求积分公式中的待定参数,使其代数精度尽量高,并其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)1121()[(1)2()3()]/3f x dx f f x f x -≈-++⎰;(4)20()[(0)()]/2[(0)()]hf x dx h f f h ah f f h ''≈++-⎰。