弹性力学教程
- 格式:ppt
- 大小:2.47 MB
- 文档页数:43
弹性⼒学教案.doc弹性⼒学教案第⼀章绪论(4学时)介绍弹性⼒学研究的内容、基本概念和基本假设。
1、主要内容:第⼀节弹性⼒学的内容第⼆节弹性⼒学的基本概念第三节弹性⼒学的基本假设2、本章重点:弹性⼒学的基本概念。
3、本章难点:弹性⼒学的基本概念。
4、本章教学要求:理解弹性⼒学的基本假设、基本概念。
5、教学组织:弹性⼒学是在学习了理论⼒学、材料⼒学等课程的基础上开设的专业课程。
学⽣已经建⽴了关于应⼒、应变、位移的概念。
⽽且能够⽤材料⼒学的⽅法对杆件进⾏应⼒计算;并进⼀步对其进⾏强度、刚度和稳定性的分析。
在本章第⼀节的教学中,要明确弹性⼒学、材料⼒学和结构⼒学在研究对象上的分⼯的不同;在研究⽅法上的不同;及其不同的原因。
并且让学⽣初步了解弹性⼒学的研究⽅法。
在本章第⼆节的教学中,要进⼀步深⼊研究作⽤在弹性体上的⼒。
明确内⼒与外⼒、体⼒与⾯⼒、应⼒⽮量与应⼒张量等概念及其表达⽅式。
在本章第三节的教学中,研究弹性⼒学的基本假设。
通过基本假设的讲解,让学⽣明⽩合理的科学假设在科学研究中的必要性和重要性。
要启发学⽣理解弹性⼒学的各个假设及其限定的缘由。
第⼆章弹性⼒学平⾯问题的基本理论(14学时)本章研究平⾯问题的基本⽅程、边界条件及其解法。
1、主要内容:第⼀节平⾯问题第⼆节平衡微分⽅程第三节斜截⾯上的应⼒、主应⼒第四节⼏何⽅程、刚体位移第五节斜截⾯上的应变及位移第六节物理⽅程第七节边界条件第⼋节圣维南原理第九节按位移求解的平⾯问题第⼗节按应⼒求解的平⾯问题、相容⽅程第⼗⼀节常体⼒情况下的简化第⼗⼆节应⼒函数、逆解法与半逆解法2、本章重点:平⾯问题的基本⽅程、应⼒函数及边界条件。
3、本章难点:平⾯问题的基本⽅程及边界条件的确定。
4、本章教学要求:掌握弹性⼒学平⾯问题的基本⽅程和应⼒边界条件;理解圣维南原理及相容⽅程的意义。
掌握按应⼒求解弹性⼒学问题的基本⽅程和概念;掌握按位移求解弹性⼒学问题的基本⽅程和概念。
弹性力学课程学习指南第一章绪论弹性力学是研究载荷作用下弹性体中内力状态与变形规律的一门科学,弹性体是指在卸载后能完全恢复其初始形状和尺寸的物体。
事实上,各门力学之间有着深刻的联系,正确认识它们之间的相同与不同之处,这样在学习弹性力学的过程中便能达到事半功倍的效果。
各个学科的研究对象与适用范围如下表所示:力学学科研究对象适用范围理论力学刚体非变形体材料力学弹性杆件线弹性、小变形等弹性力学弹性体线弹性、小变形等结构力学弹性杆件系统小变形等流体力学流体………………理论力学:理论力学和材料力学是我们学习弹性力学的基础。
平衡方程和应力边界条件这些基本控制方程的简单性体现在理论力学,而它们的丰富内涵则体现在弹性力学。
而动力学部分,弹性力学的运动微分方程根理论力学的达朗贝尔原理有着相通之处。
弹性力学以弹性体应力和变形作为研究对象,对理论力学来说是一个非常大的跨越;而工程中结构的破坏大多是由于内部的应力或应变超过了所能承受的限度,弹性力学更能指导工程建设。
材料力学:材料力学从简单的拉压变形开始一直到复杂的组合变形,为我们建立了应力和应变、应力状态和应变状态的概念,这些也是我们学习弹性力学的基础。
材料力学主要研究杆状结构在拉、压、剪切、弯、扭作用下力学分析;而弹性力学所研究的问题则非常广泛,包括杆系、板壳、实体等结构的力学分析,能解决非常复杂的工程实际问题。
材料力学中最重要的平截面假定是非常强的,而弹性力学中摒弃这一假定,其基本假定为:连续性假定(即连续介质)、均匀性假定(即认为物体由同一类型材料均匀组成)、各向同性假定(采用各向同性的本构关系)、线弹性假定(外力与变形线性变化)、小变形假定、无初应力假定。
弹性力学解要更准确,但同时求解也更加复杂。
例如,以均布压力作用下梁的弯曲问题为例,材料力学给出的梁的弯曲应力为,0x y M y Iσσ= = 其中M 为弯矩,I 为截面惯性矩;而弹性力学的解答为 ,2224321152x y M y y q y y y q I h h h h σσ⎛⎫⎛⎫⎛⎫=++ =-+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 其中q 为均布力大小,h 为截面高度;可见弹力的解能满足应力边界条件,是精确的解,而材力给出的为近似解。
弹性力学简明教程主讲:王雪峰邮 箱:***************.cn , 答疑地点:南二楼109第一章 绪论§1-1 弹性力学的学习基础一、 弹性力学课程特点 1. 数学推导频烦 2. 概念抽象3. 解析解——例题偏少,一个好的解析解可能就是一篇好的文章4. 表面上较少联系实际、实则不然 二、 本学科学习内容1. 平面问题:基本理论、直角坐标、极坐标2. 空间问题,尤其扭转问题3. 简单的薄板弯曲问题三、 弹性力学、材料力学、结构力学的区别: 特别提示:弹性力学和材料力学在剪应力方面定义的是完全相反的。
四、 弹性力学的简介 1. 固体力学的重要分支它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。
它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
下表为力学种类的一种粗略分类,由此可见弹性力学的学科地位。
它是各种建筑结构分析与计算的理论基石;是材料力学、结构力学的有力支撑;是所有涉及固体的力学学科与应学科研究对象分析对象目标特点与精度材料力学 杆状构件:杆、梁、柱 面上应力、位移 强度、刚度 宏观、近似 结构力学 杆系结构:桁架、刚架面上应力、位移 强度、刚度 宏观、近似 弹性力学 一切弹性范围内的固体连续介质:板/壳/坝/翼/墙空间各点的应力、位移强度、刚度、点的状态细观、较精确用领域包括塑性力学、粘弹塑性力学、断裂损伤力学、应力波理论、细观力学、生物力学、土力学、岩体力学等的出发点,流体力学、空气动力学其实也不例外。
→→→→→→力学种类热力学、电动力学、量子力学、分子动力学等等刚体理论力学气、液空气动力学、激波理论、流体力学弹性力学材料力学结构力学塑性力学静细观力学断裂力学损伤力学固连续统模型岩石力学基本土力学振动理论结构动力学动波动理论粘弹性理论瞬态动力学(爆炸力学)多相高等土力学(固结、渗流、饱和土与非饱和土问题)、生物力学→→细观细观力学、晶格理论宏观天体力学、固体潮、地质力学等 2. 发展简史弹性力学的发展初期,有的学者认为应从Hooke 实验 (1660) 开始到Navier 和 Cauchy 提出弹性力学的基本方程为止,这段时期还没有一套成熟的理论;理论基础建立期是从Navier 和 Cauchy 提出方程 (1821) 起到Green (1838) 和 Thomson (1855) 确定弹性系数为21 个止, 这段时期理论基本成熟,已经把物理问题或工程问题化成数学物理边值问题求解。
【最新整理,下载后即可编辑】弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
第三章平面问题的直角坐标解答要点——用逆解法、半逆解法求解平面弹性力学问题。
主要内容§3-1 逆解法与半逆解法多项式解答§3-2 位移分量的求出§3-3 简支梁受均布载荷§3-4 楔形体受重力和液体压力课堂练习:1. 试指出以下三个函数中哪个可作为求解平面问题的应力函数φ(x ,y )。
2. z 方向(垂直于板面)很长的直角六面体,上边界受均匀压力p 作用,底部放置在绝对刚性与光滑的基础上,如图所示。
不计自重,试确定其应力分量。
,31Axy =ϕ,232y Bx =ϕ3233yDx Cxy +=ϕ——满足梁的挠曲线方程:x x l EIMv y )(20−==——与材力中结果相同h/2h/20=+ωEI Ml 222)(2yEIM x l EI M μ−−−h/2h/2与材料力学中结果相同)x μσ−Gxyxyτγ=h/2h/2(中点处竖向线段转角为零)0=−ωEIMlu y xy M +−=ω位移分量求解:(1)将已求得的应力分量(2)(3)xy y x τσσ,,代入物理方程,求得应变分量xyy x γεε,,将应变分量xy y x γεε,,代入几何方程,并积分求得位移分量表达式;由位移边界条件确定表达式中常数,得最终结果。
xyllql ql yzh /2h /2)54()(2223−+−=h h q y x l hx σ(p )截面上的应力分布:xyτx σy σ)(+)(−三次抛物线q22112⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛+−=h y h y q y σ⎟⎟⎠⎞⎜⎜⎝⎛−−=22346y h x h q xyτ4.与材料力学结果比较解题步骤小结:(1)(2)(3)根据问题的条件:几何特点、受力特点、约束特点(面力分布规律、对称性等),估计某个应力分量()的变化形式。
xyyxτσσ,,由与应力函数的关系式(2-26),求得应力函数的具体形式(具有待定函数)。
弹性力学简明教程第一章绪论1-1 弹性力学的内容1-2 弹性力学中的几个基本概念1-3 弹性力学中的基本假定习题第二章平面问题的基本理论2-1 平面应力问题与平面应变问题2-2 平衡微分方程2-3 平面问题中一点的应力状态2-4 几何方程刚体位移2-5 物理方程2-6 边界条件2-7 圣维南原理及其应用2-8 按位移求解平面问题2-9 按应力求解平面问题相容方程2-10 常体力情况下的简化应力函数习题第三章平面问题的直角坐标解答3-1 逆解法与半逆解法多项式解答 .3-2 矩形梁的纯弯曲3-3 位移分量的求出3-4 简支梁受均布荷载3-5 楔形体受重力和液体压力习题第四章平面问题的极坐标解答4-1 极坐标中的平衡微分方程4-2 极坐标中的几何方程及物理方程4-3 极坐标中的应力函数与相容方程4-4 应力分量的坐标变换式4-5 轴对称应力和相应的位移4-6 圆环或圆筒受均布压力4-7 压力隧洞4-8 圆孔的孔口应力集中4-9 半平面体在边界上受集中力4-10 半平面体在边界上受分布力习题第五章用差分法和变分法解平面问题5-1 差分公式的推导5-2 应力函数的差分解5-3 应力函数差分解的实例5-4 弹性体的形变势能和外力势能5-5 位移变分方程5-6 位移变分法5-7 位移变分法的例题习题..第六章用有限单元法解平面问题6-1 基本量及基本方程的矩阵表示6-2 有限单元法的概念6-3 单元的位移模式与解答的收敛性6-4 单元的应变列阵和应力列阵6-5 单元的结点力列阵与劲度矩阵6-6 荷载向结点移置单元的结点荷载列阵6-7 结构的整体分析结点平衡方程组6-8 解题的具体步骤单元的划分6-9 计算成果的整理6-10 计算实例6-11 应用变分原理导出有限单元法基本方程习题第七章空间问题的基本理论7-1 平衡微分方程7-2 物体内任一点的应力状态7-3 主应力最大与最小的应力7-4 几何方程及物理方程7-5 轴对称问题的基本方程习题。