数字图像处理第九章解读
- 格式:ppt
- 大小:594.00 KB
- 文档页数:76
第九章1、设原图像f(x,y在[0,Mf],感兴趣目标的灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为2、梯度锐化法图像锐化法最常用的是梯度法。
对于图像f(x ,y,在(x ,y处的梯度定义为梯度是一个矢量,其大小和方向为伪彩色增强:密度分割法是把黑白图像的灰度级从0(黑到M0(白分成N 个区间Ii(i=1,2,…,N,给每个区间Ii 指定一种彩色Ci ,这样,便可以把一幅灰度图像变成一幅伪彩色图像。
该方法比较简单、直观。
缺点是变换出的彩色数目有限。
第十章1、图像退化模型假定成像系统是线性位移不变系统(退化性质与图像的位置无关,它的点扩散函数用h(x,y表示,则获取的图像g(x,y表示为g(x,y=f(x,y*h(x,y式中f(x,y表示理想的、没有退化的图像,g(x,y是劣化(被观察到的图像。
若受加性噪声n(x,y的干扰,则退化图像可表示为g(x,y=f(x,y*h(x,y+n(x,y这就是线性位移不变系统的退化模型。
2、图像的几何校正几何失真:图像在获取过程中,由于成像系统本身具有非线性、拍摄角度等因素的影响,会使获得的图像产生几何失真。
几何失真:系统失真和非系统失真。
系统失真是有规律的、能预测的;非系统失真则是随机的。
当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像,以免影响定量分析的精度。
几何校正方法图像几何校正的基本方法是先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。
几何校正通常分两步:①图像空间坐标变换;首先建立图像像点坐标(行、列号和物方(或参考图对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;②确定各像素的灰度值(灰度内插。
⎪⎩⎪⎨⎧≤≤+---<≤+---<≤=f f gMy x f b d b y x f b M d M b y x f a c a y x f a b c d a y x f y x f a c y x g ,(],(][/([(,(],(][/([(,(0,(/(,(⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=∂∂∂∂y y x f x y x f y x f f y x grad ,(,('',(/(/(((ygrad(x,,(,(1''12,(2,(2'2'x y x f y y x f x y y y x f x y x f y x tg f f tg f f ∂∂∂∂--∂∂∂∂==+=+=θ几何校正方法可分为直接法和间接法两种。
第九章 数字图象处理技术初步第一节 采样理论一、几个基本概念1、信号:信号是表示信息的一个函数。
它通常表示为时间的函数,但是,也可以表示为其它变量中的函数。
因此,我们可以认为数字图象是空域中的信号,是空间坐标的函数,而不是时域中的信号,也不是时间的函数。
虽然数字图象是两个独立变量的二维函数,但为便于讨论采样理论,通常只讨论一维的情况。
2、连续信号和离散信号:在空间上一个连续的域内定义的信号称为连续信号,而在空间内一组离散点上定义的信号称为离散信号。
3、采样及样本:对于一个连续信号来说,当它的参数改变时,可以引起数值的非常迅速的变化,从而使连续信号可以拥有丰富的变化细节。
而离散信号则不同,它只能在确定的离散点上产生函数值的变化,因而只某一个最大的变化率。
因此,转换连续信号到离散会引起丢失,但应丢失得尽可能少。
从一个连续信号中选择有限个数值的过程称为采样,选择的数值称为样本。
当取得样本后,由样本重新产生原始的连续信号的过程称为重构。
二、采样理论1、图象信号的空域和频域表示根据数学中讲授的傅立叶级数的性质,一个周期函数可以用一系列具有不同,幅值和相移的正弦函数之和表示。
这些正弦函数的频率是该周期函数基波频率的整数倍。
而一个非周期函数可以被认为是周期无限长的一个函数,这时得到一个傅立叶级数的极限形式,原始的非周期函数不能用于多个正弦函数之和来表示,而必须表示为一个连续频谱的积分,称为傅立叶积分,其基波频率趋于零。
对于图象信号而言,一般具有非周期的性质,而其空间范围是有限的,可以认为该图象信号在图象区域之外的值是0,这样的图象信号可以按非周期函数来处理。
设一维图象信号以f(x)来表示,则其傅立叶积分F(u)为:其中:u 表示Sine 和Cosine 函数的频率,F(u)表示在原始信号f(x)中频率为u 的成份,是一个复数,其幅值为:其中:R 和I 为对应的实部和虚部,其相角为:在这里,傅立叶积分将图象信号在空域表示f(x)转换为相应的频域表示F(u),因此也称傅立叶变换。