函数图象的平移与对称变换.doc
- 格式:doc
- 大小:344.50 KB
- 文档页数:2
函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。
由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。
(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。
2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。
(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。
(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。
(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。
(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。
(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。
(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。
(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。
(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。
✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。
(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。
3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。
三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。
②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。
y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。
③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。
(2)如图数图象的三种变换函数的图象变换是高考中的考查热点之一,常见变换有以下3种:一、平移变换例1设fx)=X2,在同一坐标系中画出:(1)y=fx),y=fx+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=fx),y=fx)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图点评观察图象得:y二fx+1)的图象可由y二fx)的图象向左平移1个单位长度得到;y二fx-1)的图象可由y二fx)的图象向右平移1个单位长度得到;y二fx)+1的图象可由y二fx)的图象向上平移1个单位长度得到;y二fx)-1的图象可由y二fx)的图象向下平移1个单位长度得到.二、对称变换_例2设fx)=x+1,在同一坐标系中画出y=fx)和y=f(—x)的图象,并观察两个函数图象的关系.解画出y二fx)二x+1与y二f(-x)二-x+1的图象如图所示.由图象可得函数y二x+1与y二-x+1的图象关于y轴对称.小点评函数y二fx)的图象与y二f(-x)的图象关于y轴对称;函数y二fx)的图象与y二-fx)的图象关于x轴对称;函数y二fx)的图象与y二-f(-x)的图象关于原点对称.三、翻折变换例3设fx )=x +l ,在不同的坐标系中画出y =fx )和y =|fx )1的图象,并观察两个函数图象的关系.解y 二fx )的图象如图1所示,y 二|fx )l 的图象如图2所示.点评要得到y 二fx )l 的图象,把y 二fx )的图象中x 轴下方图象翻折到x 轴上方,其余部分不变.例4设fx )=x +1,在不同的坐标系中画出y =fx )和y =f(\x\)的图象,并观察两个函数图象的关系.解如下图所示.点评要得到y 二f (\x \)的图象,先把y 二fx )图象在y 轴左方的部分去掉,然后把y 轴右边的对称图象补到左方即可.小结:y €f(x)——,y =f x )\将x 轴下方图象翻折上去y €f(x)——留y 轴右侧图象,y =f (\x \).并作其关于y 轴对称的图象—如图:y+y=f(x)四函数图象自身的对称性 1•函数y =f(x)的图象关于直x =a 2b对称…f (a +x )€f (b -x )…f (a +b -x)=f(x)2•函数y =f(x)的图象关于点(a,b)对称…2b -f(x)=f(2a -x)…f (x )€2b —f (2a —x )…f(a +x)+f(a -x)=2b3.若f(x)€-f (-x),则f(x)的图象关于原点对称,若f(x)=f(-x),则f(x)的图象关于y 轴对称。
二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。
所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。
利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。
下面由具体的例子进行说明。
一、平移。
例1、把抛物线y=x2-4x+6向左平移3个单位,再向下平移4个单位后,求其图象的解析式。
法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3个单位,再向下平移4个单位后得到三个新点(-3,2),(-2,-1),(-1,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c中,求出各项系数即可。
例2、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。
法(二)先利用配方法把二次函数化成2()=-+的形式,确定其顶点(2,-3),然y a x h k后把顶点(2,-3)向上平移4个单位,再向右平移3个单位后得到新抛物线的顶点为(5,1),因为是抛物线的平移,因此平移前后a的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(5,1),就可以求出其解析式了。
【平移规律:在原有函数的基础上“左加右减、上加下减”】.法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为“左右平移即把解析式中自变量x改为x加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。
”例3、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。
函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
专题:函数图象的平移与对称变换
一.知识结构
1.利用描点法作函数的图象的基本步骤:
①确定函数的定义域 ②简化函数的解析式
③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象
2.图象的平移变换
①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到
注意:
(1)可以将平移变换化简成口诀:左加右减,上加下减
(2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-=
3.图象的对称变换
①)(x f y =与)(x f y -=的图象关于y 轴对称
②)(x f y =与)(x f y -=的图象关于x 轴对称
③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。
⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。
⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形
二.题型选编
题组一:利用描点法作函数的图象
1.作出函数|5||2|)(--+=x x x f 的图象;
2.作出函数2
213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象;
题组二:利用图象的变换解决相应的问题
1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变
为曲线C 上点)3,3('-A ,则曲线C 的函数解析式为( )
A. 2)1(+-=x f y
B. 2)1(++=x f y
C. 2)1(--=x f y
D. 2)1(-+=x f y 2.对于定义在R 上的函数)(x f 有下列命题,其中正确的序号为
①若函数)(x f 是奇函数,则)1(-x f 的图象关于点)0,1(A 对称;
②若对R x ∈,有)1()1(-=+x f x f ,)(x f y =的图象关于直线1=x 对称; ③若函数)1(-x f 的图象关于直线1=x 对称,则函数)(x f 是偶函数;
④函数)1(+=x f y 与函数)1(x f y -=的图象关于直线1=x 对称;
3.若函数y = f (x ) (x ∈R )满足f (x + 2) = f (x ),且x ∈(–1, 1]时,f (x ) = |x |,则函数y = f (x )的图象与函数y = log 3| x |的图象的交点的个数是 .
题组三:有关图象问题的综合应用
1.若函数)10(1≠>-+=a a b a y x 且的图象经过第二、三、四象限,则一定有 .
2.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )
A .0,1<>b a
B .0,1>>b a
C .0,10><<b a
D .0,10<<<b a
3.关于x 的方程x a x x =-+-342有三个不相等的实数根,则实数a 的值是多少?
题组四:温故知新,可以为师
1.画出下列函数的图象
①2)21
(-=x y ②322-+=x x y
2.如图,在函数x y lg =的图象上有C B A ,,三点,它们的横坐标分别为m ,m +2,m +4(m >1). ①若△ABC 面积为S ,求S =f (m );
②判断S =f (m )的增减性.
1 m 2+m 4+m
x
y A
B C。