留数在物理学中的应用
- 格式:doc
- 大小:987.50 KB
- 文档页数:19
留数的求法及应用总结留数是一种在复变函数理论中用于计算复数函数在奇点处的残留的方法。
留数的计算方法有多种,例如通过直接计算留数公式、Laurent级数展开、辅助函数法、计算围道积分等。
留数的应用非常广泛,包括在计算复积分、求解微分方程、计算极限、求解物理问题等方面都有重要的应用。
首先,我们来看留数的求法。
在复变函数中,函数在奇点点处的留数可以通过以下方法求解:1. 直接计算留数公式:对于简单的函数,可以直接使用留数公式计算。
对于一阶奇点,留数可通过函数在该点的极限值计算:Res[f(z), z=a] = lim(z->a) [(z-a) * f(z)]。
对于高阶奇点,留数可以通过多次取导数再计算极限来求解。
2. Laurent级数展开:对于复变函数,在奇点附近可以进行Laurent级数展开。
然后通过观察Laurent级数的形式,可以读出相应奇点的留数。
3. 辅助函数法:对于一些复杂的函数,可以通过引入辅助函数来计算留数。
通过构造辅助函数,可以使得计算留数的过程变得更加简单。
4. 计算围道积分:复平面上的围道积分可以通过计算围道上的奇点处的留数之和来求解。
通过将围道逐步缩小,将围道上的奇点都计算在内,然后将结果相加即可得到围道积分值。
接下来,我们来看留数的应用。
1. 计算复积分:复积分可以通过计算围道上的奇点处的留数之和来进行计算。
通过围道积分的方法,可以将复积分转化为留数的求和问题,从而简化计算过程。
2. 求解微分方程:在微分方程的求解过程中,往往需要对复函数积分。
通过留数的方法,可以将复积分转化为留数的计算,从而简化问题的求解过程。
3. 计算极限:对于一些复杂的极限问题,可以通过计算极限点处的留数来进行求解。
通过将极限问题转化为留数问题,可以简化问题的求解过程。
4. 物理问题求解:在物理学中,通过留数的方法可以求解一些边界值问题、传热问题、电磁问题等。
通过将物理问题转化为留数问题,可以利用留数的性质来求解物理问题。
应用留数定理计算物理学中实变函数定积分1问题在物理学中,研究阻尼振动时计算积分0sin xdx x∞⎰,研究光的衍射时计算菲涅耳积分20sin()x dx ∞⎰,在热学中遇到积分cos (0,ax e bxdx b a ∞->⎰为任意实数)如果用实函数分析中的方法计算这些积分几乎不可能。
而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系起来。
2应用留数定理求解实变函数定积分的类型将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有12()()()ll l f z dz f x dx f z dz =+⎰⎰⎰Ñ;3)()l f z dz ⎰Ñ可以应用留数定理,1()l f x dx ⎰就是所求的定积分。
如果2()l f z dz ⎰较易求出(往往是证明为零)或可用第一个积分表示出,问题就解决了.类型一20(cos ,sin )R x x dx π⎰.被积函数是三角函数的有理式;积分区间为[0,2π].求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理.可以设ixz e =,则dz izdx =∴dz dx iz=而11cos ()22ix ix e e x z z --+==+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z kz z z z dzI R i Resf z i iz π--=+-==∑⎰Ñ 类型二-()f x dx ∞∞⎰.积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0.求解方法:如果f(x)是有理分式()/()x x ϕψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少高于()x ϕ两次. 如图2,计算积分lim()RRR I f x dx -→∞=⎰图1()()()RRlRC f z dz f x dx f z dz -=+⎰⎰⎰Ñ根据留数定理,2{()}=()()RRRC i f z l f x dx f z dz π-+⎰⎰在所围半圆内各奇点的留数之和令R →∞,有2{()}=()()RC i f z l f x dx f z dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和而()()()max ()max ()0RRRC C C dz dzRf z dz zf z zf z zf z zf z zzRππ=≤≤=⋅→⎰⎰⎰所以()=2{()}f x dx i f z l π∞-∞⎰在所围半圆内各奇点的留数之和类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰.积分区间是[0,+∞];偶函数()F x 和奇函数()G x 在实轴上没有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面或实轴上→∞时,()F x 及()G x 一致地→0.约当引理 如m 为正数,R C 是以原点为圆心而位于上半平面的半圆周,又设当z 在上半平面及实轴上→∞时()F x 一致地→0,则lim ()0Rimz C R F z e dz →∞=⎰求解方法:000111()cos ()()()()222imx imx imx imx F x mxdx F x e e dx F x e dx F x e dx ∞∞∞∞--=+=+⎰⎰⎰⎰经自变量代换,上式变为000111()cos ()()()222imx imximx F x mxdx F x e dx F x e dx F x e dx ∞∞∞-∞-∞=+=⎰⎰⎰⎰同理1()sin ()2imxG x mxdx G x e dx i∞∞-∞=⎰⎰ 由类型二可知2{()}=()()Rimx imz C i f z l F x e dx F z e dz π∞-∞+⎰⎰在所围半圆内各奇点的留数之和由约当定理2{()}=()imx imx i F x e l F x e dx π∞-∞⎰在所围半圆内各奇点的留数之和同理2{()}=()imx imx i G x e l G x e dx π∞-∞⎰在所围半圆内各奇点的留数之和所以()cos {()}imz F x mxdx i F z e π∞=⎰在上半平面所有奇点的留数之和()sin {()}imx G x mxdx G x e π∞=⎰在上半平面所有奇点的留数之和实轴上有单极点的情形 考虑积分-()f x dx ∞∞⎰,被积函数()f x 在实轴上有单极点z α=,除此之外,()f x 满足类型二或类型三的条件.求解方法:由于存在这个奇点,我们以z α=为圆心,以充分小的正数ε为半径作半圆弧绕过奇点α构成如图3所示积分回路. 于是()()()()()RRlRC C f z dz f x dx f x dx f z dz f z dz εαεαε--+=+++⎰⎰⎰⎰⎰Ñ取极限R →∞,0ε→,上式左边积分值等于2()iResf z π∑上半平面.右边第一、第二项之和即为所求积分.按类型二或类型三的条件,第三项为零. 对于第四项,计算如下:将()f z 在z α=的领域展为洛朗级数,有()1()a f z P z z αα-=+-- 其中()P z α-为级数的解析部分,它在C ε上连续且有界,因此()()()max max C C P z dz P z dz P z εεααπεα-≤-=⋅-⎰⎰所以()0lim 0C P z dz εεα→-=⎰而()()01111i i C C a a a dz d z e id ia iResf z z e εεϕϕπαεϕππαααε----=-==-=---⎰⎰⎰ 于是()-()2()f x dx iResf z iResf ππα∞∞=+∑⎰上半平面若实轴上有有限个单极点,则()-()2()f x dx i Resf z iResf z ππ∞∞=+∑∑⎰上半平面实轴上3应用留数定理求解物理学中实变函数的定积分(1)计算阻尼振动的狄利克雷型积分0sin xdx x∞⎰ 解:由类型三,将原积分改写sin 12ixx e dx dx x i x∞∞-∞=⎰⎰这个积分的被积函数ixe x除了在实轴上有单极点0x =外,满足类型三的条件.由于被积函数在上半平面无奇点,有图310=1=2222ix ix e e dx z i x x πππ∞-∞⎧⎫==⋅⎨⎬⎩⎭⎰被积函数在单极点的留数 即sin =2x dx x π∞⎰推论:对于正的m ,0sin sin ()2mx mx dx d mx x mx π∞∞==⎰⎰ (m >0)对于负的m ,0sin sin 2m x mx dx dx x x π∞∞=-=-⎰⎰ (m <0)(2)计算在研究光的衍射时菲涅耳积分20sin()x dx ∞⎰和20cos()x dx ∞⎰解:∵2222sin()Im ,cos()Re ix ix x e x e ==∴2210ix I iI e dx ∞+=⎰取图4所示回路l .由于2ix e 没有有限远奇点,所以根据留数定理得20izle dz =⎰Ñ 即22/42()/40()0i RRix iz i ei C Re dx e dz e d e πρπρ++=⎰⎰⎰令R →∞.222()/4/4/40lim lim()i i i i i RRR R e e d e e d e e d ρππρπρρρρ∞--→∞→∞=-=-⎰⎰⎰/4(1)28i e i πππ=-=-+/4222222i RRiz Reiz izC C z Redz e dz e iziz π==+⎰⎰2Riz C e dz ⎰而222/4102222R iR R i e e e iRe iR R R π---≤+→ (于R →∞)2222sin 2cos 2sin 22222222R RRiz R iR R i i C C C eeedz Re id Rd iz iR eRϕϕϕϕϕϕϕ-+-=≤⎰⎰⎰2sin 221max 02424R e R R ϕππ-⎛⎫≤=→⎪ ⎪⎝⎭(于R →∞) 图4所以21(1)08I iI iπ+-+=即18Iπ=,28Iπ=(3)计算求解热传导问题的偏微分方程时遇到的积分2co0)s(,axe bx bdx a∞->⎰为任意实数解:由类型三,将原积分改写221cos2ax ax ibxe bxdx e e dx∞∞---∞=⎰⎰取如图所示回路,由于矩形区域内函数2ax ibxe-+无奇点,所以根据留数定理得20az ibzle dz-+=⎰Ñ即2222234N ax ibx az ibz az ibz az ibzN l l le dx e dz e dz e dz-+-+-+-+-+++=⎰⎰⎰⎰当N→∞时,2222234ax ibx az ibz az ibz az ibzl l le dx e dz e dz e dz∞-+-+-+-+-∞=---⎰⎰⎰⎰只要求出上式等号右边的三个积分就可以计算出2ax ibxe dx∞-+-∞⎰所以,2cosaxe bxdx∞-⎰就可以求出.四、结语留数定理是复变函数论具体应用于积分计算中的一个非常有力的工具,把难以求解的定积分和反常积分转化为留数的计算问题,且能推广留数定理在阻尼振动、菲涅耳衍射及热传导等具体物理问题所遇到的反常积分的求解上,简化了计算过程。
数学物理方法留数定理例题一、留数定理简介留数定理是数学物理方法中的一个重要定理,起源于复分析领域。
它指出,在一定条件下,一个函数在某个区域的边界上的取值与在该区域内部某一点的取值相同。
这个定理由德国数学家卡尔·魏尔斯特拉斯(Carl Wiener)于1880年首次提出,后来被法国数学家让·卡当(Jean Coulomb)命名为“留数”。
留数定理在复分析、实分析、偏微分方程等领域具有广泛的应用。
二、留数定理的应用1.解析延拓留数定理可以用于解析延拓问题。
当一个函数在某个区域内具有奇偶性时,可以通过留数定理将该函数在边界上的取值延拓到内部点。
这种方法在解决复杂区域的积分问题时非常有用。
2.计算积分利用留数定理可以计算复杂区域的积分。
通过将积分区域分解为简单区域,并在每个简单区域内部选择一个代表点,计算代表点处的函数值,最后将各个代表点处的函数值相加,即可得到积分结果。
这种方法称为“分部积分法”。
3.求解微分方程留数定理还可以应用于求解微分方程。
通过在边界上设置适当的边界条件,可以将微分方程转化为一个或多个积分方程。
利用留数定理计算积分,可以得到微分方程的解。
三、留数定理的推广留数定理在复分析领域有多种推广形式。
例如,在多元函数中,留数定理可以推广为多重留数定理;在无穷级数中,留数定理可以用来计算级数的和;在偏微分方程中,留数定理可以用于求解边界值问题。
四、留数定理与其他数学物理方法的联系与区别留数定理与其他数学物理方法,如解析延拓、residue 计算、积分方程方法等有密切联系。
它们都用于解决复分析和实分析中的问题,但具体应用场景和解决问题的手段不同。
留数定理侧重于研究函数在边界与内部点之间的关系,而其他方法则关注如何利用这种关系求解问题。
五、留数定理在实际问题中的应用案例留数定理在实际问题中具有广泛的应用。
例如,在电路分析中,留数定理可以用于计算复杂电路中的电流、电压等物理量;在经济学中,留数定理可以用于研究货币供应量、利率等经济变量之间的关系;在生物学中,留数定理可以用于研究生物种群的数量动态等。
留数定理的应用(优选)word资料留数定理的应用应用留数定理,我们也可以解决有关零点与极点的个数问题,因为教学时间的关系,我们只介绍儒歇定理,并应用它来决定方程在一些区域内根的个数。
儒歇定理 设D 是在复平面上的一个有界区域,其边界C 是一条或有限条简单闭曲线。
设函数f (z )及g (z )在D 及C 所组成的闭区域D 上解析,并且在C 上,|f (z )|<|g (z )|,那么在D 上,f (z )及 f (z )+g (z )的零点的个数相同。
注解1、应用此定理时,我们只要估计和在区域边界上模的值。
注解2、选择f (z )及g (z )的原则是,f (z )在内的零点个数好计算。
例1、 求方程,012558=+--z z z在|z|<1内根的个数。
解:令,2)(,15)(85z z z g z z f -=+-=由于当|z|=1时,我们有,41|5||)(|5=--≥z z f而,3|2||||)(|8=+≤z z z g已给方程在|z|<1内根的个数与155+-z 在|z|<1内根的个数相同,即5个。
例2、 如果a>e ,求证方程n z az e =在单位圆内有n 个根。
证明:令,)(,)(n z az z f e z g =-=由于当1||||==θi e z 时,,|||)(|,|||)(|cos e a az z f e e e z g n z >==≤=-=θz n e az -在|z|<1内的零点的个数与n az 相同,即n 个,因此方程n z az e =在单位圆内有n 个根。
论场论三度与两大定理在物理的应用张 晗30901068信计0901时间与空间是物理最基本的物理量:我们也为了了解物理量随时间变化而做多次实验,定义了很多关系,比如速度等于位移随时间变化率, 加速度等于速度随时间变化率,v 等于能量随时间变化率等, 因为时间是纯量 所以处理起来还算比较简易。
留数在物理学中的应用
一、留数在物理学中的应用
1、在力学中,留数可以用来表示重力,运动学,力学,动能守恒,电磁学中物体的位置,速度和动量,它们可以帮助我们把握物体的运动轨迹,建立更精确的物理模型。
2、在热力学中,留数则用于表示温度,压强,能量等,可以用来研究物质的多尺度及力学行为,可以更好地说明天然界的热力学现象。
3、在光学中,留数还可以用来表示光学界面的折射系数,折射指数,反射系数等,可以用来研究各种材料的光学性质,提高光学仪器精度和灵敏度。
在物理学中,留数发挥着重要的作用,它们不仅能够帮助我们描述物体的运动轨迹,还可以用来更准确地研究物质的物理行为和热力学现象,以及各种材料的光学性质,是物理学中不可或缺的一部分。
- 1 -。
留数在物理学中的应用摘要:留数定理是复变函数理论的一个重要定理,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等都有密切的联系. 应用留数定理可以求解某些较难的积分运算问题, 所以它可以起到采用不同方法,相互检验所得结果的作用.具体的物理问题中遇到的一些积分在数学分析中没有对应的原函数,留数定理往往是求解这些积分的有效工具。
本文介绍留数概念,留数定理,对留数定理进行一定的拓展,以及留数理论在电磁学中安培环路定理、高斯定理公式推导,以及在阻尼振动、热传导、光的衍射等问题中积分计算上的的一些应用,大大简化了计算过程。
关键词:留数定理、安培环路定理、高斯定理、阻尼振动、热传导目录第一章 留数..........................................3 1.1 引言 1.2 留数的定义 1.3 留数定理1.4 留数定理的计算规则 1.5 留数定理的拓展第二章 留数定理在电磁学中的应用.........................6 2.1 安培定理及其与留数定理的区别 2.2 应用留数定理对安培环路定理的推导 2.3 留数定理在静电学中的应用 2.4 留数在电磁学中一类积分中的应用第三章 留数定理在物理学其他领域的应用.......................15 3.1 留数在有阻尼的振动的狄利克雷型积分dx xx⎰∞sin 中的 3.2 留数定理在研究光的衍射时需要计算的菲涅尔积分dx dx x x ⎰⎰∞∞22cos ,sin 中的应用3.3 留数定理在用傅里叶变化法求解热传导问题的偏微分方程时将遇到的⎰∞->0),0(cos 2为任意实数b a bxdx x ea积分中的应用第四章 结语 (18)参考文献 (19)第一章 留数]1[1.1 引言留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等都有密切的联系. 留数定理是留数理论的基础,也是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算在孤立奇点处的留数,需要正确理解孤立奇点的概念与孤立奇点的分类和函数在孤立奇点的留数概念.掌握留数的计算法,特别是极点处留数的求法,实际中会用留数求一些实积分.现在研究的留数理论就是柯西积分理论的继续,中间插入的泰勒级数和洛朗级数是研究解析函数的有力工具.留数在复变函数论本身及实际应用中都是很重要的它和计算周线积分(或归结为考察周线积分)的问题有密切关系.此外应用留数理论,我们已有条件去解决“大范围”的积分计算问题,还可以考察区域内函数的零点分布状况.1.2 留数的定义如果函数)(z f 在z 0的邻域内是解析的,则根据柯西-古萨基本定理0)(=⎰dz z f c(1)其中C 为z 0邻域内的任意一条简单闭合曲线.但是如果z 0是)(z f 的一个孤立奇点,且周线C 全在z 0的某个去心邻域内,并包围点,则积分⎰cdz z f )(的值,一般说来,不再为零并且利用洛朗级数公式很容易计算出它的值来 ⎰cdz z f )(=ic π21- (2)我们把(留下的)这个积分值除以2πi后所得的数为)(z f 在0z 的留数,记作Res ]),([0z z f ,即Res ]),([0z z f =⎰cdz z f i )(21π (3) 从而有Res ]),([0z z f =c 1- (4) 此处的c 1-是函数)(z f 通过洛朗级数展开的第负一次项系数.1.3 留数定理定理一 设函数)(z f 在区域D 内除有限个孤立奇1z ,2z ,...,n z 外处处解析.C 是D 内包围诸奇点的一条正向简单闭曲线,那么 ⎰cdz z f )(=2πi∑=nk 1]),([k z z f (5)利用这个定理,求沿封闭曲线C 的积分,就转化为求被积函数在C 中的各孤立奇点处的留数.定理二 如果函数)(z f 在扩充复平面内只有有限个孤立奇点,那么)(z f 在所有各奇点(包括∞点)的留数的总和必等于零.1.4 留数求法及一般规则I 如果0z 是)(z f 的可去奇点,那么 Res ]),([0z z f =0,以为此时)(z f 在0z 的展开式是泰勒展开式,所以c 1-=0II 如果0z 是本性奇点,那就往往只能把)(z f 在0z 展开成洛朗级数的方法来求c1-.III 在0z 是极点情形,有以下三种特殊情况下的规则 规则一 如果0z 为)(z f 的一级极点,那么Res ]),([0z z f =lim 0z z →(z-0z ))(z f (6)规则二 如果0z 为)(z f 的m 级极点,那么Res ]),([0z z f ={})()(lim 0)!1(1110z f z z dzd mm m z z m ---→- (7)规则三 设)(z f =)()(z Q z P ,P(z)及Q(z)在z 0都解析,如果P(z)≠0,Q (z )=0,Q '(z)≠0,那么0z 为)(z f 的一级极点,而Res ]),([0z z f =)(')(z Q z P (8) 规则四 ]0,1)1([Re ]),([Re 2zz f s z f s ⋅-=∞ (9)1.5 留数定理的拓展对于复变函数积分,无论留数定理还是柯西定理、柯西公式及高阶导数公式都只能处理解析函数沿内部有有限个极点的闭曲线的复积分问题,对于积分区线上有极点的情况没有提及. 如果用极限的方法,不但相当复杂且不能保证最终求出. 当被积函数满足一定的条件]2[,即区域D 的境界线为C ,函数 )(z f 在D 内解析且在C 上连续并满足Höl der 条件: a z z K z f z f |||)()(|2121-≤-,(0≤α<1 ) ,其中K 、α 都是实常数,1z 、2z 为C 上任意两点,此时可以推导出一个该积分的“积分主值”的计算公式:)(),()(000C z z if dz z z z f ∈=-⎰π (10) 鉴于留数定理和柯西公式之间的关系,可以将积分曲线上有限个极点的情况推广到留数定理上. 函数 )(z f 在闭曲线l 所围的区域D 上除具有有限个奇点外是解析的,此时,留数定理的结论可改写为∑∑⎰+=内上l l z f R i z f R i dz z f )(es )(es 2)(ππ (11)经过这样的推广后,直接可以用到积分区间上有极点的实变函数无穷积分上,无需针对实轴上的极点取辅助曲线,使得这类积分的求解过程得以简化.第二章 留数定理在电磁学中的应用]3[2.1 安培环路定理及其与留数定理的区别电磁学中安培环路定理的表述:磁感应强度B 沿任何闭合琦璐L 的线积分,等于穿过这环路所有电流强度的代数和的 u 0倍.即⎰∑==⋅L a k k I u l d B 1(12)其中电流I 的正负规定如下;当穿过回路L 的电流方向与回路L 的环路方向服从右手法则时,I>O ,反之,I<O.该定理与留数定理虽然是属于不同领域中的定理.但是它们在数学形式上有着极其相似的形式.(12)式和(5)式的左边都是沿着某一闭合回路的线积分,面其右边又都是表示某些标量的代数和.而这些量都直接同方程左边的函数有着某种内在的联系.从以上的分析我们能否得出;直接利用复变函数的方法导出电磁学中的安培环路定理.而不要直接计算线积分? 回答是肯定的.2.2 应用留数定理对安培环路定理的推导我们知道留数定理是适用于复数领域,而安培环路定理中的磁感应强度B是矢量,因此不能直接将留数定理应用于电磁学中的安培环路定理,必须重新构造一个复数场才能应用.为此我们考虑一无限长截流导线周围空间的磁场分布,如图1所示.图1 无限长截流导线周围空间的磁场分布设无限长载流导体中的电流为I ,电流的方向指向纸面的外部.由电磁学知,空间的磁感应强度B为202/r r I u B π= (13) 其中r 为极径。
在直角坐标系中B 可以写成分量形式,如下: 2202y x yI u B x +⋅-=π 2202y x xI u B y +⋅=π (14) y B x B B y x+=其中x 和y分别为x 轴和y 轴的单位矢量.我们可以构造一个下面的复变量来代替(14)式.x y iB B B +=~(15)函数x B 和y B 为满足柯希—— 里曼方程的解析函数.于是B可以改写成如下形式:x y iB B B +=~)(2220y x iyx I u --=π z I u π20= (16)设回路中有n 个电流源n I I I 21,通过.如图2所示,在C 内除去n I I I 21,点外的所有区域上)(z B 是解析的.对于这个n 个点分别用回路n C C C 21,包围,则按照按照柯希—— 里曼定理有;021=⋅--⋅-⋅-⋅⎰⎰⎰⎰dz B dz B dz B dz B nc c c c(17)图2 回路C 中有n 个电流源而根据留数定理有⎰===⋅cz I iu z sB i dz B 00|)(Re 2π(18)又⎰⎰+=⋅ccy x dy B dx B l d B )(⎰⎰⎰++-=++ccy x x y cx y dy B dx B i dy B dx B idy dx iB B )()()()( (19)考虑到(17)式和(18 )式,则可得0)(=-⎰cx y dy B dx B (20)和 ⎰⎰⋅==+ccy x l d B I u dy B dx B0)( (21)以上是我们讨论回路中只有一个电流源的情况,下面我们将导出回路中包含有n 个电流源的情况:k cI iu dz B 0=⋅⎰于是 ∑⎰==⋅n k k zI iu dz B 1即 ∑⎰==⋅n k k cI u dz B 1(22)到此为止,我们利用复变函数的方法推导出了电磁学中的安培环路定理,其方法比较简便,避免了一些教材中的复杂推导.从以上的推导过程我们可以看出.只要选择合适的复数来表示电磁学中的电学量和磁学量,便可以利用留数定理推导出电磁学中的一些有用结论.在前面的推导过程中,利用复数x y iB B B +=~和留数定理得到方程(20)式和(21)式.(21)式即为安培环路定理.但方程(21)式我们还没有给出它们的物理意义.方程(20)式可以改写成⎰⨯cl d B=0对于二维情况⎰⨯cl d B表示的是一个“二维通量 ”,即表示通过长度dl 的磁通量。
因此方程(20)式可以看作磁学中的磁高斯定理,它表示通过环路C 的总“二维磁通量”为零 这表明B 线应该是闭合环线,这也就是我们通常所说的磁场为涡旋场。
2.3 留数定理在静电学中的应用同磁学中的讨论方法相同,现在我们考虑二维平面静电场问题,这里选择线电荷分布.其电荷线密度为λ(λ>0).考虑线电荷在空间产生电场的轴对称性.选取线电荷沿z 轴分布,它所产生的电场E 在y x -平面内成径向分布,如图四所示.由电磁学知:r r E)2/(20πελ= (23) 在直角坐标系中分量形式为=x E )2/(0r πελ[)/(22y x x +])]/()[2/(220y x y r E y +=πελ现在我们构造一个复函数E ~E ~=zy x iy x iE E y x 1220220⋅=+-⋅=-πελπελ 那么E ~除z=0外在空问各点都处处解析.在z=0处,由留数定理有00/)2/(2~ελπελπi i dz E c==⋅⎰ (24)又 ⎰⎰+⋅-=⋅ccy x idy dx iE E dz E )()(⎰⎰--+=cx y cy x dy E dx E i dy E dx E )()( (25)由(24)式和(25)式可得 ⎰=+c y x dy E dx E 0)(即 0=⋅⎰cl d E(26)和 0/)(ελ-=-⎰cy x dy E dx E (27)有以上推导可知,利用复数 y x iE E E -=~和留数定理得到方程(26)式和(27)式,(26)式即为电磁学中的静电场环路定理,它表明静电场是保守场,且静电场中电力线不可能是闭合线。