物理学中的群论基础第一章
- 格式:ppt
- 大小:522.00 KB
- 文档页数:27
物理学中的群论——群论基础主讲翦知渐群论教材教材与参考书教材:自编参考书群论及其在固体物理中的应用参考书:群论及其在固体物理中的应用(徐婉棠)物理学中的群论(马中骐)物理学中的群论基础(约什)群论-群论基础第章群论基础第一章群的基本概念和基本性质§1.1 集合与运算§1.2群的定义和基本性质§1.3 子群及其陪集13§1.4 群的共轭元素类§1.5 正规子群和商群§1.6 直积和半直积16§1.7 对称群§1.8 置换群§1.1集合与运算抽象代数的基本概念1集合抽象代数研究的对象什么都不是,所以什么都是集合的直乘:C=A×B,表示“C的元素是由A和B两个集合的元素构成的C A表示“一对有序元”,也称为A和B的直乘,用符号表示即:, a2,…, a i,…},B={b1, b2,…, b j,…},则集合设A={aA}B b b}则集合1C=A×B={(a i,b j)| a i∈A, b j∈B}是A与B的直乘。
定义设是两个集合若有种规则使得2映射定义:设A 与B 是两个集合,若有一种规则f ,使得A 的每一个元素在B 上都有唯一的元素与之对应,这种对应规则f 的一个映射记为就称为A 到B 的个映射,记为f :A → Bf :x → y = f ( x ) , 或写为f y f (),式中y 称为x 在B 上的象,而x 称为y 在A 上的原象。
对应规则函数对应规则:函数满射单射一一映射逆映射:f -1恒等映射:e 变换恒等映射:体系A 的一个自身映射f 称为A 的一个变换,若f 是一一映射则称为对称变换一一变换有性质:射,则称为对称变换。
变换有性质:f f -1= f -1f = e3二元运算定义:若对A 上的每对有序元(a, b ) ,在A 上有唯确定的A每一对a,b)A上有唯一确定的c与之对应,即有一规则R 使得A×A → A,则R 称为A上的一个二元运算,记为()()R:A×A → A,或R:a, b ) →c= R(a, b)一般记为c = a·b,或c = ab。
第一章抽象群基础§1.1 群【定义1.1】G是一个非空集合,G ={…,g,…},“·”为定义在任意两个元素之间的二元代数运算(乘法运算),若G及其运算满足以下四个条件:(1)封闭性:∀f,g ∈G, f·g=h, 则h∈G;(2)结合律:∀f, g, h∈G,(f·g)·h=f·(g·h);(3)有单位元:∃e ∈G, ∀f ∈G, f·e=e·f=f;(4)有逆元素:∀f ∈G,∃f -1∈G, 使f·f -1= f -1·f = e;则称G为一个群,e为群G的单位元,f--1为f的逆元。
·系1. e是唯一的。
若e、e´皆为G的单位元,则e·e´= e´,e·e´= e,故e´= e。
·系2. 逆元是唯一的。
若存在f的两个逆元f´=f",则f'=⋅⋅=⋅=⋅=, 即''f⋅=⋅f'=f''ef''f''f)(f'ef'(ff'f'')·系3 e –1 = ee –1 = e -1·e = e, 即:e –1 = e。
·系4 若群G的运算还满足交换律,∀f,g∈G,有f·g=g·f, 则称G为交换群,或阿贝尔群。
群是我们定义的一种抽象结构,具有一般性,它象一个空筐子,可以装入各种具有相同抽象结构的实际对象。
通过研究抽象结构的一般性质,就可以掌握各种实际对象的性质。
例1.1 整数集{z}及其上的加法+单位元为0, 逆元z-1= -z,构成整数加法群。
例1.2 实数集R,运算为加法:单位元e = 0, 逆元:∀a∈R,a –1 = -a,构成加群。
第一章 群的基本知识二十一世纪以来,特别是爱因斯坦(Einstein )发现相对论之后,对称性的研究在物理学中越来越重要.对称性帮助人们求得物理问题的解,也帮助人们寻求新的运动规律。
物理学家不仅研究了空间和时间的对称性,而且找到了许多内部对称性,如强作用的SU (2)同位旋对称,SU (3)色和味的对称,弱电统一的SU(2)XU (1)的对称,偶偶核的U (6)动力学对称等等.从七十年代起,又开展了超对称性的研究。
群论是研究对称性问题的数学基础,因此,它越来越受到物理学工作者的重视。
1.1 群定义 1.1 设G 是一些元素的集合,}{},,{g g G == .在G 中定义了乘法运算。
如果G 对这种运算满足下面四个条件:(1) 封闭性。
即对任意G g f ∈,,若h fg =,必有G h ∈。
(2) 结合律.对任意G h g f ∈,,,都有())(gh f h fg =.(3) 有唯一的单位元素。
有G e ∈,对任意G f ∈,都有f fe ef ==(4) 有逆元素。
对任意G f ∈,有唯一的G f∈-1,使e ff f f ==--11 则称G 为一个群。
e 称为群G 的单位元素,1-f称为f 的逆元素. 例1 空间反演群。
设E 和I 对三维实空间3R 中向量→r 的作用为 →→→→-==r r I r r E ,即E 是保持→r 不变的恒等变换,I 是使→r 反演的反演变换,定义群的乘法为从右到左连续对→r 作用。
集合{}I E ,构成反演群,其乘法表见表1.1。
例2 n 阶置换群n S ,又称n 阶对称群。
将n 个元素的集合},,2,1{n X =映为自身的置换为 ,2121⎪⎪⎭⎫ ⎝⎛=n m n m m P 其中n m m m ,,,21 是n ,,2,1 的任意排列,P 表示把1映为1m ,2映为2m ,n 映为n m 的映射。
显然置换只与每列的相对符号有关,与第一行符号的顺序无关,如⎝⎛2421 ⎪⎪⎭⎫3143= ⎝⎛2324 ⎪⎪⎭⎫4113。
第一章第一章 抽象群概论§1 什么是群什么是群??群公理不同元素的集合不同元素的集合,,赋予一定的合成规则赋予一定的合成规则((称为群称为群““乘法乘法””—— 加、乘、对易子等对易子等)。
)。
满足下列满足下列条件条件((群公理群公理)): (1)封闭性 i g 和G g j ∈,则G g g g k j i ∈=⋅; (2)结合律 )()(k j i k j i g g g g g g ⋅⋅=⋅⋅;(3)存在唯一的单位元素e (或E )G ∈ ,对任一元素j g 有j j j e g g e g ⋅=⋅=; (4)对每一元素有逆元对每一元素有逆元,,对i g 有 1−i g ,使e g g ii =⋅−1。
阶 —— 群元的个数群元的个数::阶有限为有限群阶有限为有限群;;阶无穷为无限群阶无穷为无限群。
无限群又分无限离散和无限连续无限群又分无限离散和无限连续。
注:1. 乘法不可对易乘法不可对易,,即i j j i g g g g ⋅≠⋅。
若可对易若可对易,,则称为阿贝尔称为阿贝尔((Abel )群。
2. 若G c b a ∈,,,则G 中包含p l k c b a ,,(其中p l k ,,为整数为整数))。
例1.复数1,i ,-1,-i 组成四阶群组成四阶群。
四阶循环群 —— 由一个元素由一个元素,,i (或-i )出发出发,,由它及其幂由它及其幂次次生成整个群G ,称为循环群称为循环群。
循环群必是阿贝尔群环群必是阿贝尔群。
n 阶循环群可表为{23,,...n a a a a e =}。
例2.所有实数组合所有实数组合,,加法运算下成群加法运算下成群。
全体正实数在乘法运算下成连续群全体正实数在乘法运算下成连续群。
例3.定轴转动定轴转动::Π<Θ≤20,)2(SO 无限连续群无限连续群。
特例 —— 转角为m 倍nπϑ2=构成n 阶群n C ;定点转动定点转动((三维空间转动三维空间转动)):),,(γβαR ,)3(SO 群。
物理学中的群论第⼀章线性代数物理学中的群论第⼀章线性代数声明:这是我根据黄飞⽼师上课内容记的笔记(易懂)。
教材:马中骐的物理学中的群论书(不好懂,所以我没看)。
希望对学群论的⼈有所帮助。
这两章线性代数考试不会考,但⾮常重要,后⾯都在⽤。
1.1节线性空间和⽮量基1.⽮量基有加法和数乘、⼀组线性⽆关的客体2.⽮量3.m维线性空间:就是定义了加法和数乘m个基⽮量对应m维简单来说,线性空间就是⽮量空间,线性空间中只有加法和数乘(即只有两个⽮量相加、数乘),但是没有⽮量乘法,也没有长度这样的概念。
如果在线性空间中引⼊点乘,长度、垂直的概念,此时称为内积空间。
线性空间性质:4.实线性空间:5.⽮量、基⽮量的矩阵表⽰⽮量矩阵表⽰:列矩阵基⽮量矩阵表⽰:、、按基⽮量展开,其第个分量为基⽮量矩阵表⽰是只有⼀个分量为1,其他分量为零的列矩阵。
6.线性空间的维数1)线性相关、线性⽆关2)线性空间的维数线性空间的维数:线性空间中线性⽆关的⽮量的最⼤个数。
m 维线性空间中,线性⽆关的⽮量数⽬不能⼤于m 。
⽮量基是线性⽆关的,m 维线性空间中任何 m 个线性⽆关的⽮量都可以作为⼀组⽮量基。
7.线性空间的⼦空间⼦空间就是在m 维线性空间中,有⽐m 维数⼩的个数的线性⽆关⽮量的所有的线性组合,构成⼀个n 维线性空间。
⽐如三维空间中,两个基⽮量的所有线性组合构成x-y 平⾯,是⼆维线性空间,是⼦空间。
我们通常说的⼦空间是⾮平庸的⼦空间,不包括零空间和全空间。
8.两个⼦空间的和两个⼦空间的和:两个⼦空间和的所有⽮量及这些⽮量的线性组合的集合, 记作;注意并⾮和的所有⽮量的集合,因为除了将这些⽮量放在⼀块以外,还需要将它们线性组合。
例如,构成的⼦空间和构成的⼦空间的和是整个三维空间。
9.两个⼦空间的交两个⼦空间的交:,例如,构成的⼆维⼦空间和构成的⼀维⼦空间的交是零空间(零⽮量构成的空间)。
10.两个⼦空间的直和两个⼦空间的直和:若是、的和(即),且下⾯三个等价的条件中任意⼀条成⽴:则称为两个⼦空间和的直和,记作 ,此时与称为中互补的⼦空间。