华东师范大学概率论与数理统计考研复试分数线录取比例及真题试卷答案
- 格式:doc
- 大小:52.50 KB
- 文档页数:2
概率论与数理统计试题与答案(2021-2021-1)概率统计模拟题一一、填空题〔此题总分值18分,每题3分〕1、设,3.0)(,7.0)(=-=B A P A P 那么)(AB P = 。
2、设随机变量p)B(3,~Y p),B(2,~X ,假设95)1(=≥X p ,那么=≥)1(Y p 。
3、设X 与Y 相互独立,1,2==DY DX ,那么=+-)543(Y X D 。
4、设随机变量X 的方差为2,那么根据契比雪夫不等式有≤≥}2EX -X {P 。
5、设)X ,,X ,(X n 21 为来自总体)10(2χ的样本,那么统计量∑==n1i iXY 服从分布。
6、设正态总体),(2σμN ,2σ未知,那么μ的置信度为α-1的置信区间的长度=L 。
〔按下侧分位数〕 二、选择题〔此题总分值15分,每题3分〕 1、假设A 与自身独立,那么〔 〕(A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<<A P ; (D) 0)(=A P 或1)(=A P 2、以下数列中,是概率分布的是〔 〕(A) 4,3,2,1,0,15)(==x xx p ; (B) 3,2,1,0,65)(2=-=x x x p (C) 6,5,4,3,41)(==x x p ; (D) 5,4,3,2,1,251)(=+=x x x p 3、设),(~p n B X ,那么有〔 〕(A) np X E 2)12(=- (B) )1(4)12(p np X D -=- (C) 14)12(+=+np X E (D) 1)1(4)12(+-=+p np X D4、设随机变量),(~2σμN X ,那么随着σ的增大,概率()σμ<-X P 〔 〕。
(A)单调增大 (B)单调减小 (C)保持不变 (D)增减不定5、设),,,(21n X X X 是来自总体),(~2σμN X 的一个样本,X 与2S 分别为样本均值与样本方差,那么以下结果错误的选项是......〔 〕。
概率与数理统计历届真题第一章随机事件和概率数学一:1〔87,2分〕设在一次试验中A 发生的概率为p ,现进展n 次独立试验,如此A 至少发生一次的概率为;而事件A 至多发生一次的概率为。
2〔87,2〕三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。
现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于。
取出的球是白球,此球属于第二个箱子的概率为。
3〔88,2分〕设三次独立试验中,事件A 出现的概率相等,假如A 至少出现一次的概率等于2719,如此事件A 在一次试验中出现的概率为。
4〔88,2分〕在区间〔0,1〕中随机地取两个数,如此事件“两数之和小于56〞的概率为。
5〔89,2分〕随机事件A 的概率P 〔A 〕=0.5,随机事件B 的概率P 〔BP 〔B | A 〕=0.8,如此和事件A B 的概率P 〔A B 〕=。
6〔89,2分〕甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现目标被命中,如此它是甲射中的概率为。
7〔90,2分〕设随机事件A ,B 与其和事件A B 的概率分别是0.4, 0.3和0.6,假如B 表示B 的对立事件,那么积事件A B 的概率P 〔A B 〕=。
8〔91,3分〕随机地向半圆0<y <22x ax -(a 为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比。
如此原点与该点的连线与x 轴的夹角小于4π的概率为。
9〔92,3分〕P 〔A 〕=P 〔B 〕=P 〔C 〕=161)()(,0)(,41===BC P AC P AB P ,如此事件A 、B 、C 全不发生的概率为。
10〔93,3分〕一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,如此第二次抽出的是次品的概率为。
11〔94,3分〕A 、B 两个事件满足条件P 〔AB 〕=P 〔A B 〕,且P 〔A 〕=p ,如此P 〔B 〕=。
考研概率论真题及答案解析概率论作为数学的一门重要分支,有着广泛的应用领域和深厚的理论基础。
对于准备考研的同学来说,掌握概率论的知识是非常重要的。
今天,我们将针对概率论的真题进行解析,帮助同学们更好地理解和应用概率论的相关概念和方法。
在考研概率论的真题中,经常涉及到的几个重要的概念有:随机变量、概率分布、概率密度函数、独立性等。
而在解题过程中,我们需要根据题目所给的条件和要求,灵活运用这些概念和方法,找出解题的关键点,从而得出正确的答案。
以一道典型的概率论题目为例:某公共汽车站每天早晨7:00至8:00的到站时间符合区间(7:00, 8:00)上的均匀分布。
某人随机到达该站,并独立观察公共汽车是否已经到达。
如果某人等候时间超过20分钟,则他将离开。
求某人等候时间超过20分钟的概率。
在解析这道题目之前,我们先来理解一下题目中涉及到的概念。
首先,题目中提到公共汽车的到站时间符合区间(7:00, 8:00)上的均匀分布。
这意味着在这个时间段内,公共汽车到站的时间是均匀分布的,也就是说在这个时间段内任何一个时间点,公共汽车到站的概率是相等的。
这是一个非常重要的前提条件。
其次,题目要求求出某人等候时间超过20分钟的概率。
这就涉及到了条件概率的计算。
在这个问题中,我们可以采用反面的思路,即计算某人等候时间不超过20分钟的概率,然后再用1减去这个概率,即可求得所需的概率。
假设$t$表示某人等候时间,$P(t \leq 20)$表示某人等候时间不超过20分钟的概率。
由于公共汽车的到站时间是均匀分布的,所以我们可以假设公共汽车到站的时间$T$在区间$(7:00, 8:00)$内是均匀分布的随机变量。
因为题目中没有给出具体的均匀分布的参数,所以我们可以假设公共汽车从7:00开始到8:00结束,总共的时间是1小时,即60分钟。
根据均匀分布的性质,可以得出公共汽车到站时间在每一分钟出现的概率是$P(T=t)=\frac{1}{60}$。
数理统计考研复试题库及答案一、选择题1、设随机变量 X 服从正态分布N(μ,σ²),且P(X≤c) = P(X>c),则c 等于()A 0B μC σD σ²答案:B解析:正态分布的概率密度函数关于均值μ 对称,所以P(X≤μ) =P(X>μ),故 c =μ。
2、设随机变量 X 的方差为 2,则根据切比雪夫不等式,有 P(|X E(X)|≥ 2) ≤ ()A 05B 025C 01D 005答案:B解析:切比雪夫不等式为 P(|X E(X)|≥ ε) ≤ Var(X) /ε² ,将Var(X) = 2,ε = 2 代入可得 P(|X E(X)|≥ 2) ≤ 2 / 2²= 025 。
3、设总体 X 服从参数为λ 的泊松分布,X₁, X₂,, Xₙ 为来自总体的样本,样本均值为,则λ 的矩估计值为()ABCD答案:A解析:因为总体 X 服从泊松分布,所以 E(X) =λ 。
由矩估计法,用样本均值估计总体均值 E(X),即,所以λ 的矩估计值为。
4、设 X₁, X₂,, Xₙ 是来自正态总体N(μ,σ²)的样本,其中μ 未知,σ² 已知。
则检验假设 H₀: μ =μ₀所用的统计量是()ABCD答案:C解析:当总体方差σ² 已知时,检验假设 H₀: μ =μ₀所用的统计量为。
5、对于两个正态总体,在方差已知的情况下,检验均值是否相等,应采用()A t 检验B u 检验C F 检验D χ² 检验答案:B解析:在两个正态总体方差已知的情况下,检验均值是否相等,采用 u 检验。
二、填空题1、设随机变量 X 的分布函数为 F(x) = A + Barctan(x),则 A =,B =。
答案:A = 1/2,B =1/π解析:因为 F(+∞)= 1,F(∞)= 0 ,所以 A +B × π/2 = 1,AB × π/2 = 0 ,解得 A = 1/2,B =1/π 。
华师大统计真题答案解析统计学是一门独特而又广泛应用的学科,它研究如何从已知或未知数据中提取有用的信息,帮助我们做出正确的决策。
对于考生来说,掌握统计学知识并且熟悉真题解析是备考的关键。
本文将针对华师大统计学相关真题进行答案解析,帮助考生更好地应对考试。
一、选择题解析1. 在简单随机样本中,如果每个样本在样本空间被抽到的概率相等,则该样本是:正确答案:A. 全概率样本解析:简单随机样本是从总体中随机抽取的样本,每个样本在样本空间被抽到的概率相等,所以它是全概率样本。
2. 假设检验的目的是:正确答案:C. 根据样本提供的信息,对总体的某个性质是否成立进行判断解析:假设检验是利用样本提供的信息来对总体的某个性质是否成立进行判断,因此选项C是正确答案。
二、计算题解析1. 设X和Y为两个随机变量,已知X的概率密度为fX(x),Y的概率密度为fY(y),则随机变量Z = X + Y 的概率密度函数为:正确答案:fZ(z) = ∫[fX(z-y) * fY(y) dy]解析:根据概率密度函数的定义,随机变量Z的概率密度函数为两个随机变量X和Y的概率密度函数的乘积的积分。
因此,原式的答案为fZ(z) = ∫[fX(z-y) * fY(y) dy]。
2. 如果样本容量n较大,总体分布接近正态分布,那么推断总体均值σ的置信度为95%的估计是:正确答案:C. x̄± zα/2 * σ / √n解析:根据中心极限定理,当样本容量n较大时,样本均值的分布接近于正态分布。
因此,用样本均值±zα/2 * 标准误差的估计可以作为总体均值σ的置信度为95%的估计。
标准误差为σ / √n,其中σ为总体标准差,n为样本容量。
三、应用题解析1. 某工厂生产的甲型零件的重量服从正态分布N(μ1, σ2),乙型零件的重量也服从正态分布N(μ2, σ2)。
甲、乙两型零件的重量差的期望为:正确答案:μ1 - μ2解析:根据随机变量的期望的性质,两个随机变量之差的期望等于这两个随机变量的期望之差。
概率论与数理统计答案(华东师大魏宗舒版)第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,,=A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件:(1)没有一个零件是不合格品;(2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
数理统计考研复试题库及答案一、选择题1、设随机变量 X 的概率密度为 f(x) = 2x, 0 < x < 1,则 P{02 <X < 08} =()A 06B 04C 032D 016答案:C解析:P{02 < X < 08} =∫02,08 2x dx = x^2|02,08 = 064 004 =062、设 X₁, X₂,, Xₙ 是来自正态总体 N(μ, σ²) 的样本,样本均值为X,样本方差为 S²,则()A Xμ ~ N(0, 1)B n(Xμ) /σ ~ N(0, 1)C (Xμ) /(S /√n) ~ t(n 1)D (n 1)S²/σ² ~χ²(n 1)答案:D解析:根据抽样分布的性质,(n 1)S²/σ² ~χ²(n 1)3、设总体 X 服从参数为λ 的泊松分布,X₁, X₂,, Xₙ 是来自总体 X 的样本,则λ 的矩估计量为()A XB S²C 2XD 1 /X答案:A解析:由 E(X) =λ ,且样本矩等于总体矩,可得λ 的矩估计量为X。
4、对于假设检验问题 H₀: μ =μ₀,H₁: μ ≠ μ₀,给定显著水平α ,若检验拒绝域为|Z| >zα/2 ,其中 Z 为检验统计量,当 H₀成立时,犯第一类错误的概率为()A αB 1 αC α/2D 1 α/2答案:A解析:第一类错误是指 H₀为真时拒绝 H₀,犯第一类错误的概率即为显著水平α 。
5、设随机变量 X 和 Y 相互独立,且都服从标准正态分布 N(0, 1) ,则 Z = X²+ Y²服从()A 正态分布B 自由度为 2 的χ² 分布C 自由度为 1 的χ² 分布D 均匀分布答案:B解析:因为 X 和 Y 相互独立且都服从标准正态分布,所以 Z = X²+ Y²服从自由度为 2 的χ² 分布。