AP1000核电站数字化反应堆保护系统
- 格式:pdf
- 大小:429.16 KB
- 文档页数:6
AP1000与EPR简介1.AP1000与EPR简介1.1AP1000西屋公司在已开发的非能动先进压水堆AP600的基础上开发了AP1000。
2002年3月,核管会已经完成AP1000设计的预认证审查(Pre-certification Review),AP600有关的试验和分析程序可以用于AP1000设计。
2004年12月获得了美国核管会授予的最终设计批准。
AP1000为单堆布置两环路机组,电功率1250MWe,设计寿命60年,主要安全系统采用非能动设计,布置在安全壳内,安全壳为双层结构,外层为预应力混凝土,内层为钢板结构。
AP1000主要的设计特点包括:(1)主回路系统和设备设计采用成熟电站设计AP1000堆芯采用西屋的加长型堆芯设计,这种堆芯设计已在比利时的Doel4号机组、Tihange3号机组等得到应用;燃料组件采用可靠性高的Performance+;采用增大的蒸汽发生器(D125型),和正在运行的西屋大型蒸汽发生器相似;稳压器容积有所增大;主泵采用成熟的屏蔽式电动泵;主管道简化设计,减少焊缝和支撑;压力容器与西屋标准的三环路压力容器相似,取消了堆芯区的环焊缝,堆芯测量仪表布置在上封头,可在线测量。
(2)简化的非能动设计提高安全性和经济性AP1000主要安全系统,如余热排出系统、安注系统、安全壳冷却系统等,均采用非能动设计,系统简单,不依赖交流电源,无需能动设备即可长期保持核电站安全,非能动式冷却显著提高安全壳的可靠性。
安全裕度大。
针对严重事故的设计可将损坏的堆芯保持在压力容器内,避免放射性释放。
在AP1000设计中,运用PRA分析找出设计中的薄弱环节并加以改进,提高安全水平。
AP1000考虑内部事件的堆芯熔化概率和放射性释放概率分别为5.1×10-7/堆年和5.9×10-8/堆年,远小于第二代的1×10-5/堆年和1×10-6/堆年的水平。
简化非能动设计大幅度减少了安全系统的设备和部件,与正在运行的电站设备相比,阀门、泵、安全级管道、电缆、抗震厂房容积分别减少了约50%,35%,80%,70%和45%。
AP1000反应堆功率控制系统分析作者:张俊来源:《科技传播》2016年第17期摘要本文详细分析了AP1000反应堆功率控制系统在高、低功率水平下的反应堆功率控制、轴向功率分布的控制,总结了AP1000反应堆功率控制系统的特点,提出了今后运行过程中可能的风险和相应的建议。
关键词反应堆功率水平;功率分布;控制棒;控制中图分类号 TL3 文献标识码 A 文章编号 1674-6708(2016)170-0214-02反应堆功率控制系统是核电厂的核心控制系统之一,其主要功能是实现对反应堆功率的自动控制,包括整个反应堆的功率水平控制以及反应堆内的轴向功率分布控制。
本文将从高功率模式下的平均温度控制、低功率模式下的反应堆功率控制,反应堆轴向功率分布控制等方面来详细分析AP1000的反应堆功率控制系统的控制方式和特点。
1 AP1000反应堆功率水平控制1.1 高功率水平下的反应堆功率水平控制高功率(15%FP~100%FP)水平下,通过两个偏差信号之和得到的总偏差信号来向控制棒控制逻辑柜输出控制棒移动速度和移动方向信号,通过调节M棒组维持反应堆冷却剂的平均温度和功率水平一致。
这两个偏差信号分别是:温度偏差信号和功率偏差信号。
温度偏差信号为主偏差信号,是汽机功率转化得到的参考温度信号与测得的高选反应堆冷却剂平均温度信号之差;反应堆冷却剂平均温度由热段和冷段测量温度来决定,参考温度在零负荷至满负荷范围内,随着汽轮机负荷线性增加。
功率偏差信号是汽机输出功率信号与测量核功率信号之差。
该输入控制信号能改善系统的响应,减少系统的瞬态峰值,因此可以提高控制子系统的控制性能。
1.2 低功率水平下的反应堆功率水平控制低功率控制模式(3%FP~15%FP)主要是启动和停堆时使用,其控制偏差由功率偏差形成,即操纵员设定的功率给定值与反应堆外核测功率之差,用以控制控制棒的移动方向和速度。
该模式下,汽轮机解列,蒸汽旁路排放系统用于调节反应堆冷却剂的温度,操纵员可以输入核功率整定值、以及变化到目标功率水平的时间,使核功率按照设定的速率线性变化,达到期望的核功率。
AP1000反应堆功率控制系统棒联锁逻辑分析'AP1000反应堆功率控制系统棒联锁逻辑分析1 概述反应堆功率控制系统用于维持和调节反应堆堆芯参数在设计要求范围内,以确保反应堆按照电厂功率要求输出热功率。
作为主要过程控制系统之一,反应堆功率控制系统的控制逻辑设计对电厂稳定运行至关重要。
AP1000反应堆功率控制系统包括两个子系统:反应堆冷却剂平均温度(Tavg)控制子系统和反应堆轴向功率偏移(AO)控制子系统(以下简称Tavg控制和AO控制)。
Tavg控制响应二回路负荷要求,根据一回路工艺过程实测温度值与二回路要求值之间的偏差计算并输出控制,调节反应堆功率控制棒组(M棒组)按一定速率(8步/分至72步/分)在堆芯移动,从而实现维持或调节反应堆冷却剂平均温度在程序设定值的目的,Tavg控制即反应堆输出热功率控制.AO控制根据堆外核测仪表所测的反应堆上下部功率之差(反应堆功率轴向偏差)与系统设定偏差带之间的偏移量来计算并输出控制,调节反应堆轴向功率偏移控制棒组(AO棒组)按固定速率(8步/分)在堆芯移动,从而维持轴向功率偏差在要求的偏差控制带内。
反应堆稳定运行及瞬态过程中,Tavg控制子系统和AO控制子系统同时独立采集不同的堆芯参数,响应不同的控制要求,逻辑上独立运算,最终输出控制指令至棒控系统不同类型的控制棒组。
在系统功能设计上两者相对独立,但在实际控制执行中,两者存在逻辑接口。
西屋原设计中两个子系统的逻辑接口包括:(1)在控制棒交换过程中,AO控制棒将执行Tavg控制指令,此时仅执行Tavg控制。
(2)在M棒移动过程中,AO棒的移动将被闭锁,直至M棒动作(Tavg调节)结束。
接口1:是AP1000反应堆控本文由联盟收集整理制过程中的周期性操作,本文不做分析.接口2)即为实现M棒组动作优先于AO棒组动作的棒联锁设计,M棒动作指令将直接作为闭锁AO棒移动的条件之一,本文重点对此联锁设计进行分析.2 控制要求及棒联锁逻辑分析2.1 反应堆控制要求如前所述,反应堆正常运行过程中,棒控系统将独立接收来自Tavg控制和AO控制输出的M棒和AO棒动作指令,M棒移动(提棒或插棒)将闭锁AO棒移动(提棒或插棒),直至M棒动作指令结束.此控制策略体现了Tavg控制要优先AO控制,在某一瞬态均有Tavg和AO调节需求时,只有先完成Tavg调节后才能进行AO 调节。
浅谈AP1000核电厂安全级仪控系统1 概述AP1000核电厂采用了全数字化仪控系统,其中保护和安全监测系统(PMS)属于安全级,其余均为非核安全级。
PMS系统为电厂提供反应堆停堆、专设安全设施、核级数据处理三大主要功能。
PMS系统直接关系到核电站的安全运行,是AP1000机组中最为重要的仪控系统,因此该系统现场安装的全过程需要高度关注。
2 PMS安装工程分类及施工要点PMS系统安装的实体工作可分解成三大类:处理机柜、电缆与光缆、中子探测器。
2.1 处理机柜PMS总共包含39个DCS(集散控制系统)标准机柜,尺寸约为700*750*2300(宽*深*高),按照功能分为NIC(核仪表子系统柜)、BCC(双稳态逻辑处理器柜)、ILC(符合逻辑处理器柜)、MTP(检修试验柜)、QDP(核级数据处理子系统柜)、SVC(爆破阀控制子系统)、SOE(顺序事件记录柜)。
PMS机柜按照不同的安全序列分别布置在辅助厂房内的6个房间内,成排布置。
PMS属于精密电子设备,对安装环境的要求高,温度必须控制在10℃~25℃、相对湿度控制在20%~75%、空气中无粉尘和腐蚀性气體。
AP1000首堆工程中,现场参照ASME NQA-1的标准,在PMS房间建立了增强的Ⅲ级清洁区,不仅对进入人员、进入材料、区域内的焊接、切割、打磨等动火作业加以控制,还专门设置了临时空调、除湿机、吸尘器等设施改善安装环境。
PMS机柜的安装过程大体包括五个步骤:(1)卸车。
按照核电厂物项分类原则,有抗震要求的PMS机柜属于B类物项,卸车时应十分注意机柜顶部吊耳的受力均衡性,以防止机柜结构变形。
为此,首堆工程中采用了一种方形平衡梁,并与其他辅助吊具一起进行了150%静载试验;(2)引入房间。
PMS机柜要求竖直搬运,但受限于厂房内门洞高度,通过时需要倾斜。
此时应注意倾斜时必须确保柜门在两侧而不至于受压变形。
首堆工程中专门设计了一种翻转运输小车,为提高厂房内搬运效率;(3)调平。
AP1000反应堆姓名:班级:学号:AP1000反应堆AP1000的前身是AP600,它是美国西屋公司推出的先进压水堆核电厂设计。
这项研究从1985年开始到1998年9月获得设计批准,历时13年,投入了1300人/年的工作量,耗资约6亿美元。
其主要特点有:采用非能动的安全系统,安全相关系统和部件大幅减少、具有竞争力的发电成本、60年的设计寿命、数字化仪空室、容量因子高、易于建造(工厂制造和现场建造同步进行)等,其设计与性能特点满足用户要求文件(URD)的要求。
西屋公司在开发AP1000之前,已完成了AP600的开发工作,并于1998年9月获得美国核管会(NRC)的最终设计批准(FDA),1999年12月则获得NRC 的设计许可证,该设计许可证的有效期为15年。
西屋公司投入了大量人力,通过大量的实体试验和众多听证与答辩来确保其设计的成熟性。
AP1000设计完全建立在AP600的已论证技术基础之上,是AP600的“放大”。
AP1000基本上保留了AP600核岛底座的尺寸,但也作了适当的设计改进以提升AP1000的先进性和竞争力:增加堆芯长度和燃料组件的数目;加大核蒸汽供应系统主要部件的尺寸;适当增加反应堆压力壳的高度;采用△125的蒸汽发生器;采用大型密封反应堆主泵(装备有变速调节器);采用大型的稳压器;增加安全壳的高度;增加某些非能动安全系统部件的容量;增加汽轮机岛的尺寸和容量等。
AP1000的技术特点反应堆采用西屋成熟的Model314技术,该技术已成功地用于比利时Doel-4、Tihange-3和美国South Texas Project电站上。
反应堆冷却系统为二环路设计,每个环路通过冷却剂管道联接有一台大容量蒸汽发生器和两台密封式的冷却剂泵,此外冷却系统上还联接有一台稳压器。
采用非能动的安全系统。
它采用双层安全壳,并保留了AP600的非能动安全系统的构架,系统设计简化,安全性大大提高。
仪控系统是基于Sizewell B的全数字技术而开发完成的,特别采用了经验证的数字化安全系统,采用了紧凑型的工作站式的控制室,采用了基于影像技术的人-机接口。
AP1O0 0是西屋公司开发的一种两环路1000MW e的非能动压水反应堆核电。
与传统的PWR安全系统相比,非能动安全系统要简单得多,它们不需要现有核电站中那些必不可少、种类繁多的安全支持系统,如相关的安全级交流电源、HVAC(加热、通风、空调系统)、冷却水系统以及安装这些部件的抗震厂房。
非能动安全系统的采用和系统的简化,减少了运行人员的操作。
通过这些设计改进,API000机组的安全性得到了显着的改进,其堆芯熔化概率3x1.Ox 1 0-7/堆年,远低于URD要求的1.0x10—5/堆年,进一步将A P 600“非能动”理念引入压水反应堆设计,使得设计大大简化、安全性提高、投资有所降低、设计与性能特点满足用户要求文件(URD)的要求。
A AP 1 00 0的设计满足用户对具有非能动安全性能的先进轻水堆的要求(UR D),具有第三代先进轻水堆的简单性、安全性、可靠性和经济性的特点。
AP1000的主要性能特点是系统简化、非能动安全、数字化仪控和模块化建造,主要设计目标包括:机组额定电功率:^lOOOMWe4电站设计寿命:60年4堆芯损坏频率:V 1 .0X1E-5/堆年4严重事故下大量放射性物质释放至环境的频率:V1。
O X 1E-6/堆年换料周期:18个月另外,AP1000的设计目标还包括从设计、认证、建设、运行、检测和维修等方而提供一个尽可能简化的核电站.» 模块化建设由于初投资大,因此核电发电成本对建设期的长短非常敏感,现有核电站的建设期太长就成为新建核电站在财务上的主要障碍之一。
为此,AP1O0O将实行一种新的建设模式-一虚拟建造技术和模块式建设方式。
虚拟建造技术是利用虚拟现实技术的思想将三维工厂设计技术与施工进度计划管理结合在一起,以实现对A P10O O的建造进行可视化计划编制和可视化进度仿真及优化的一项新技术。
采用这项技术,有可能大幅度地提高核电厂施工现场的平行施工能力和工作效率,实现模块化设计和模块化施工,达到缩短AP10O0施工工期的目的。
AP1000核电站数字化反应堆保护系统冀焕青【期刊名称】《自动化与仪表》【年(卷),期】2013(028)002【摘要】三代核电技术AP1000将是我国今后长期发展的核电技术,已经过美国核管理委员会最终设计批准,应用于浙江三门1000MW核电站.AP1000核电站核反应堆设计采用先进的非能动安全技术与数字化反应堆保护系统.该文介绍了AP1000核电站反应堆保护系统的数字化仪控平台Common Q、反应堆保护系统的总体结构和设计特点等方面的内容.%AP1000 nuclear power plant was chosen as the next generation nuclear power plant in China. AP1000 final design has been approved by U.S. nuclear regulatory commission and applied in Sanmen 1000MW nuclear power plant in Zhejiang province.AP1000 uses advanced passive safety technology and digital reactor protection system. This paper introduces the digital instrument and control platform Common Q、reactor protection system general architecture and design characteristics.【总页数】6页(P11-15,60)【作者】冀焕青【作者单位】中广核工程公司设计院上海分院,上海 200030【正文语种】中文【中图分类】TP277【相关文献】1.田湾核电站数字化反应堆保护系统可靠性分析 [J], 周海翔;王卫国2.核电站数字化反应堆保护系统旁通设计研究 [J], 姚芝强3.核电站数字化反应堆保护系统中央处理器负荷率分析与测试 [J], 汪绩宁4.核电站数字化反应堆保护系统停堆响应时间分析 [J], 郑伟智;李相建;朱毅明5.秦山核电站反应堆保护系统数字化改造后的特点 [J], 何瑾因版权原因,仅展示原文概要,查看原文内容请购买。
AP1000核电大修保护系统无料窗口工作执行方案优化分析摘要∶AP1000核电核大修无料窗口反应堆保护系统工作为大修主线工作,直接影响大修工期,执行方案的优化可带来巨大的经济效益。
本文通过对大修无料窗口PMS系统工作特点的充分梳理,避免各项工作之间差生干扰,对大修无料窗口保护系统工作执行方案优化。
同时在做到保证保护系统工作进度的同时,将对其他专业工作的影响降到最低。
关键词∶AP1000;核电;反应堆保护;1背景根据技术规格书要求,AP1000核电在大修无料窗口期间反应堆保护系统(PMS)需执行工作如下:PMS/DAS系统相关定期试验、PMS仪表通道校验、PMS 机柜/主控室/备控室(MCR/RSR)手动驱动开关预防性维修等工作。
上述工作同时会制约电气专业及就地阀门功能性验证等工作,故无料窗口PMS工作为主线工作,直接影响大修工期,执行方案的优化可带来巨大的经济效益。
2保护系统简介AP1000核电保护与安全监视系统(PMS)基于ComQ平台实现,属1E级。
该平台配置有四个冗余序列,停堆及专设驱动逻辑为四取二。
主要用于完成监测电厂关键参数、触发反应堆停堆、驱动专设安全设施动作以及事故后监视等安全功能。
多样化驱动系统(DAS)属于非安全级系统,它作为PMS系统的后备,当PMSCOMMONQ平台出现共模故障时,DAS用来降低堆芯融化和安全壳超压的概率。
技术规格书的短期可用性控制要求对DAS监督试验进行监督。
3核电无料窗口PMS各项工作特点分析根据电厂技术规格书要求,大修无料窗口期间PMS和DAS需执行工作特点如下:1.手动驱动开关定期试验:试验内容及方法:通过驱动PMS系统所有专设功能手动进行驱动,在电厂控制系统(PLS)侧验证相应计算机点状态翻转。
先决条件:在PMS系统完成孤岛模式建立后执行(即PMS送至PLS侧相关计算机点信号完成隔离措施,PMS系统所有设备接口模块(CIM)置于就地位置,PMS控制的爆破阀电缆断开);执行此试验期间要求PMS机柜同时带电运行。
AP1000第三代核电站数字仪控系统DCS第三代核电 2009-09-30 19:41 阅读36 评论0字号:大中小AP1000第三代核电站数字仪控系统DCS简介:1. AP1000 仪控系统是一个先进的分散式计算机控制系统(即DCS)。
它是在已获美国NRC 许可证的AP 600 基础上又作了一些改进与发展,主要体现在反应堆保护系统的设计上, AP600 采用的是西屋已很成熟的Eagle 系统, AP1000 则提供了二套方案,一套是沿用AP600 的Eagle 方案,另一套是在此基础上改进的Common Q 系统。
由于AP600 已获得许可证,所以Common Q 在很大程度上都维持了原AP600关于I&C系统的功能要求,以使二者在硬件和软件方面能最大限度地兼容。
2. DCS 系统设备可分为二大类:一为安全级设备(1E 级),执行反应堆保护、专设安全系统驱动等功能。
一为非安全级设备(非1E 级),执行电厂控制、数据采集、显示、记录以及多样性驱动系统等功能。
3. 90 年代中:西屋在WDPF 的基础上经改进成为现在的OVATION 系统,它在常规电厂及核电站非1E 级的仪控系统中得到相当广泛的应用。
对1E 级(核安全级)系统则又开发了COMMON Q 系统(是Ea gle 的改进)。
2000 年后( ADVANT+OVATION 系统) :西屋的核电部份和美国另一家重要的PWR 核电供应商ABB/CE 公司先后加入了英国的BNFL公司,由于ABB/CE 也是一家在核电仪控方面能力相当强的公司,它早已取得NRC 的证书,特别是它的1E 级部分(ADVANT)包含有核级堆芯计算机,可以作DNBR 和LPD的在线计算与保护。
4. 应用公司系统应用说明西屋WDPF+EAGLE21 技术改造OVATION+ COMMON QABB/CE NUPLEX80+ADVANT 韩APR1400,美PLAO西屋+ABB OVATION+ ADVANT西门子TXP+TXS田湾核电站EDF/FRA N4 N4电站FANP TXP+TXS (FANP是FRA和西门子联合公司)。