当J (F,G) 0时, 可表示为 (y, z)
, 且有
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
T 1, (x0 ), (x0 )
1 ,
1 J
(F,G) (z , x)
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
一、一元向量值函数及其导数
(一)向量值函数的概念 (二)向量值函数的极限和连续 (三)向量值函数的导数 (四)举例
➢定义
设向量值函数 f (t )在点 t0的某一邻域内有定义, 如果
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
T
M
特别, 当光滑曲面 的方程为显式
F(x, y, z) f (x, y) z
时, 令
则在点 (x, y, z),
故当函数
在点 ( x0, y0 ) 有连续偏导数时, 曲面
f (t)的三个分量函数 f1(t), f2(t), f3(t)都在 t0 可导.
当f (t)在 t0 可导时, f (t) f1(t)i f2(t) j f3(t)k.
➢运算法则
设u(t), v(t),(t)可导, C是常向量, c是任一常数,则
(1) d C 0 dt
(2) d [cu(t)] cu(t) dt
例1. 求圆柱螺旋线
在
对应点处的切线方程和法平面方程.
解: 由于
对应的切向量为 T (R , 0, k), 故