运放选型 amplifier
- 格式:pdf
- 大小:18.10 KB
- 文档页数:3
运算放大器参数详解(二)运算放大器参数详解1. 引言运算放大器(Operational Amplifier,简称Op-Amp)是电子电路中最常用的集成电路之一,具有高增益、高输入阻抗和低输出阻抗等特点。
本文将详细解释运算放大器的几个重要参数。
2. 增益增益是运算放大器最重要的性能指标之一,通常用电压增益表示。
它可以分为三个级别:•开环增益:即放大器内部的增益,通常非常大,可以达到几十万或更高。
•差模输入电压增益:当放大器的两个输入端有差异时,输出的增益。
•单端输入电压增益:当放大器的一个输入端和参考电位有差异时,输出的增益。
3. 带宽带宽是指运算放大器能正常工作的频率范围。
一般来说,带宽越大越好。
带宽的计算公式为:[ = ]4. 输入电阻和输出阻抗输入电阻是指放大器的输入端对电压信号的阻抗,输出阻抗是指输出端对负载的阻抗。
一般来说,输入电阻越大越好,输出阻抗越小越好。
它们可以影响放大器的稳定性和性能。
5. 器件参数器件参数是指运算放大器本身的特性参数,如偏置电流、输入偏置电流和漂移、噪声等。
这些参数对放大器的性能和稳定性有重要影响,需要根据具体应用进行选择。
•偏置电流:放大器输入端的直流电流。
•输入偏置电流和漂移:输入端电流和漂移对放大器的性能和稳定性有影响。
•噪声:放大器的噪声对信号的清晰度和精度有直接影响。
6. 综合性能指标基于以上参数和特点,可以综合评估运算放大器的性能,如稳定性、线性度、精度和动态性能等。
这些指标可以帮助选择合适的运放器件,以满足具体应用的需求。
结论运算放大器是电子电路中不可或缺的重要元件,准确了解和理解运算放大器的参数对于正确设计和选择放大器至关重要。
只有综合考虑各项参数,才能选择适合自己应用的运放器件,并获得理想的性能。
运放参数运放(Operational Amplifier,简称Op Amp)是一种有着特殊符号的集成电路元件,其具有高放大增益、宽带、高输入阻抗、低输出阻抗等特点,被广泛应用于模拟电路和数字电路中。
以下是一些常用的运放参数:1. 常模增益:表示运放输出信号与输入信号共同变化的增益,常用符号为Acm。
2. 差模增益:表示运放输出信号与两输入信号差值之间的关系,常用符号为Adm。
3. 常模输入阻抗:表示运放两输入端之间对于共模信号的阻抗,常用符号为Ricm。
4. 差模输入阻抗:表示运放两输入端之间对于差模信号的阻抗,常用符号为Ridm。
5. 输出阻抗:表示运放输出端的阻抗,常用符号为Rout。
6. 带宽:表示运放能够放大信号的最高频率,常用符号为Bw(Bandwidth)。
7. 偏置电压:表示运放两输入端之间的电压差,常用符号为Vos(Offset Voltage)。
8. 共模抑制比:表示运放输出信号与共模信号的比值,常用符号为CMRR (Common Mode Rejection Ratio)。
9. 输入偏置电流:表示运放两输入端的电流偏置,常用符号为Ib(Input Bias Current)。
10. 输入偏置电流温度漂移:表示运放输入偏置电流随温度变化的比值,常用符号为Ib/T。
(其中’T’为温度变化量)。
11. 噪声:表示运放输入信号中的噪声电压,常用符号为En。
12. 失调电流:表示运放输出信号与输入信号之间的失调电流,常用符号为Ioff。
13. 失调电压:与失调电流类似,表示运放输出信号与输入信号之间的失调电压,常用符号为Voff。
以上几个参数是运放设计与选择时需要考虑的重要因素,通常应根据实际需要进行综合考虑。
运放芯片选型运放芯片(Operational Amplifier,简称OP-AMP)作为一种重要的模拟电路元件,在电子设备中有着广泛的应用。
因为其输入输出信号放大倍数大、频响宽,输入阻抗高,输出阻抗低,能够提供良好的放大和滤波特性,因而成为许多电子设备和系统中的关键器件。
运放芯片的选型对电路设计和性能有着重要影响,以下将介绍运放芯片选型的一些关键因素。
首先,需要考虑的是运放芯片的工作电压范围。
根据具体应用场景和电路要求,选择适合的工作电压范围的运放芯片。
通常,运放芯片的工作电压范围可分为单电源和双电源两种。
单电源工作的运放芯片适合于只有正电压供应的场合,而双电源工作的运放芯片既适用于正负电压供应的场合,也适合于只有正电压供应的场合。
其次,需要考虑的是运放芯片的增益带宽积。
增益带宽积是一种关键的性能指标,它是指运放芯片在单位频率范围内的放大倍数乘以频率的积。
增益带宽积越大,运放芯片的高频响应能力越强。
对于高频信号处理和放大的应用,需要选择增益带宽积较大的运放芯片。
同时,还需要考虑运放芯片的输入偏置电流和输入偏置电压。
输入偏置电流是指运放芯片输入端的电流偏离零电流的程度,而输入偏置电压是指电压应用于运放芯片输入端时输出端的电压偏离零电压的程度。
这两个参数越小,表示运放芯片的输入电流和电压偏置能力越好,对精确放大和信号处理的应用更加适合。
另外,还需要关注的是运放芯片的电源电流和静态功耗。
电源电流是指运放芯片从电源中获取的电流,静态功耗是指在没有输入信号时运放芯片本身消耗的功率。
选择低电源电流和低静态功耗的运放芯片,可以减少电路系统的功耗,延长电池使用寿命。
此外,还需考虑运放芯片的温度特性和稳定性。
温度特性是指运放芯片在不同温度下的性能表现,稳定性是指运放芯片的工作在不同温度和电源波动下的性能表现。
应选择具有良好温度特性和稳定性的运放芯片,以确保电路设计的可靠性和稳定性。
最后,还需要考虑运放芯片的价格和供应情况。
运放芯片 YD2200 参数介绍一、概述运放芯片(Operational Amplifier,简称 OPAMP)是一种重要的电子元器件,用于信号放大、滤波、比较和信号调理等应用。
YD2200 是一款常见的运放芯片,具有多种特性和功能,适用于广泛的电路设计和应用场景。
二、基本参数1. 供电电压(VCC): YD2200 芯片的供电电压范围为正负 5V 到正负18V,这使得它能够适应不同电源需求,并提供稳定的工作环境。
2. 输入偏置电流(IB): YD2200 的输入偏置电流非常小,通常在几十纳安到几百纳安之间。
这意味着在使用该芯片时,输入端所需的驱动电流非常低,有助于降低功耗和提高电路的性能。
3. 开环增益(Aol):YD2200 的开环增益通常在100dB 到120dB 之间。
这意味着它能够提供很高的信号放大能力,适用于需要精确放大小信号的应用。
4. 带宽(BW): YD2200 的带宽通常在几十千赫兹到几百千赫兹之间。
这意味着它能够处理较高频率的信号,使其适用于音频放大、通信和控制系统等领域。
5. 输出电流(IO): YD2200 的输出电流通常在几十毫安到几百毫安之间,具有较高的输出能力,可以驱动负载电阻,满足不同应用对输出功率的需求。
三、特色功能1. 低噪声: YD2200 在设计中采用了低噪声技术,能够提供清晰、稳定的信号放大,适用于对信号质量要求较高的应用,如音频放大器和测量仪器。
2. 温度稳定性: YD2200 具有良好的温度稳定性,能够在广泛的工作温度范围内提供可靠的性能。
这使得它适用于各种环境下的应用,如汽车电子、工业控制等领域。
3. 低功耗: YD2200 的设计优化了功耗,能够在保证性能的同时降低功耗,延长电池寿命,减少能源消耗。
4. 过载保护: YD2200 内置过载保护电路,能够在输出过载时自动切断输出,保护芯片和外部电路的安全。
5. 外部补偿: YD2200 支持外部补偿电路的连接,可以通过调整外部元件来优化芯片的频率响应和稳定性。
一、引言在英语中,amplifier是一个常见的词汇,它具有多重意义,包括电子设备中的放大器、语言中的强调手段等。
本文将从多个角度解释amplifier在英语中的含义和用法。
二、amplifier的电子设备含义在电子领域中,amplifier指的是一种用来增大信号电压、电流或功率的设备。
它常用于各类音响设备、通信设备和传感器中,起到放大信号的作用。
1. 放大器的原理放大器会通过内部的电子元件(如晶体管、真空管等)对输入信号进行放大,增加其幅度,使其能够驱动输出负载。
2. 放大器的种类放大器根据其工作方式和应用领域可以分为多种类型,包括功率放大器、运放放大器、音频放大器、射频放大器等。
3. 放大器的应用放大器经常被用于音响系统、电视机、无线电、手机和各种传感器中,提供信号的放大和处理功能。
三、amplifier的语言含义在英语中,amplifier还可以指代语言中的强调手段。
当人们想要强调某个观点或信息时,常会使用一些特定的语言手法,来增强言辞的效果。
1. 强调句型在英语中,可以通过调整语气和句型结构来强调某个词或短语,如将句子中的关键词使用强读或倒装结构等。
2. 修辞手法修辞手法也是一种语言中的amplifier,如排比、夸张、反问等手法都可以用来增强表达的效果。
3. 语气词一些语气词如very、extremely、absolutely等也可以在日常交流中起到放大语气的作用。
四、amplifier的其他含义除了在电子设备和语言中的含义外,amplifier在其他领域中也有一些特殊的含义。
1. 媒体与宣传在媒体和宣传领域,amplifier指的是一个可以放大声音、图像或信息的设备或手段,如扩音器、广播设备等。
2. 社会学与心理学在社会学和心理学中,amplifier也被用来指代能够放大影响力或情绪的因素,如领导者的示范作用、群体心理的放大效应等。
3. 艺术与文化在艺术和文化领域,amplifier可以指代一种表现手法或装置,能够加强作品的表现力和冲击力。
如何选择适合的运放在电子设备中,运放(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于信号放大、滤波、波形整形等电路中。
正确选择适合的运放对于电路性能的稳定与提高至关重要。
本文将介绍如何选择适合的运放。
一、了解运放的基本参数运放有许多基本参数需要了解,以下是几个重要的参数:1. 增益带宽积(Gain Bandwidth Product,GBW):表示运放的增益与频率的乘积,通常以MHz为单位。
选择运放时,应根据电路所需的最大增益和工作频率来确定适合的GBW值。
2. 输入失调电压(Input Offset Voltage,Vos):表示在两个输入端之间存在的微小电压差,会对输出结果产生影响。
通常以mV为单位,应尽量选择Vos较小的运放。
3. 输入失调电流(Input Offset Current,Ios):表示运放两个输入端之间的电流差异,也会对输出结果产生影响。
通常以nA为单位,应尽量选择Ios较小的运放。
4. 输入偏置电流(Input Bias Current,Ib):表示运放两个输入端的总电流,同样会对输出结果产生影响。
通常以nA为单位,应选择Ib较小的运放。
二、考虑电源电压范围运放通常需要工作在一定的电源电压范围内,过高或过低的电源电压都会影响运放的性能。
因此,在选择运放时,要根据实际应用的电源电压范围来确定适合的运放。
三、确定功耗要求功耗是选择运放时需要考虑的一个重要指标,如果对设备的功耗要求较高,应选择低功耗的运放。
四、选择合适的封装类型运放有多种封装类型,如DIP、SOP、SSOP等。
选择封装类型时,应根据实际使用环境和电路布局来确定合适的封装类型。
五、参考应用案例和厂商手册了解同类产品的应用案例和厂商手册中的参数说明是选择适合运放的有效方法。
可以参考厂商手册中的参数表,并与实际应用需求进行对比和分析。
选择适合的运放是一项重要而复杂的任务,需要结合实际需求和对运放性能的了解。
理想运放的技术指标理想运放技术指标运放(Operational Amplifier,简写为Op-Amp)是一种模拟集成电路,在各种应用中,它被广泛用于放大、比较、运算、滤波、调节等电路功能,使用广泛,影响重大。
运放的技术指标是衡量运放性能的重要指标之一,控制着运放的高低品质和容易使用的能力。
针对运放现阶段的发展形势,推行了运放的理想技术指标。
一、稳定性:1. 空载输出漂移:是指在无外部作用力的条件下,输出电压的变化率。
在机械加工和组装过程中,如果没有稳定高度的质量控制,电容容易对该指标产生影响,影响元件稳定。
2. 引脚原理:是指输入及输出引脚的变位,也是决定运放性能的核心因素。
引脚中间应尽量控制有平衡的极化幅度,以期取得精度高的性能和小的漂移量的输出偏移。
3. 电压增益和频带:是指放大电路的增益指标,表量放大器对频率调制输入信号的放大级。
电压增益低,频带窄,意味着放大器输出信号和输入信号的频率调制差距较大,跟踪性能较差。
二、精度指标:1. 共模抑制率:是指运放输出流过共模滤波电路的输出与参考电平的比值,反映共模输出幅度的变化程度,其准确性会直接影响元件的精度指标和电路的稳定性。
2. 输入噪声电压:是指运放输出脉冲焦耳噪声功率和总功率的比值,决定运放的静态精度指标。
最好的情况是,噪声电压被屏蔽在一定电压范围以内,不影响输出精度。
3. input Offset Voltage:是指多端接地共模输入情况下所得到的输出伏安数,表征运放元件内抗偏置电路在反馈回路以及其它回路状态下,所产生的电压尺度和精度性能;该指标越小,表明失调电压越低,就表示性能越好。
三、热行为:1. 失配电阻:是指放大阻抗不同的失配,也就是输入阻抗和输出阻抗不同的比值,该指标越高,表明电路的压摆率越低,精度表现越好。
2. 热时稳定性:是指运放元件在温度变化时所产生的性能漂移程度。
该参数值越小,表明运放芯片抗温度变化越好;若输入端与输出端幅度变化剧烈,一定要求考虑到运放抗温度变化的能力。
Operational Amplifier(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in,single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。
一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。
最基本的运算放大器如图1-1。
一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。
通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。
原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。
但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。
开环回路运算放大器如图1-2。
当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:Vout=(V+-V-)*Aog其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai 由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。
因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。
闭环负反馈将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。
运放选型
运算放大器的结构形式主要有三种:模块、混合电路和单片集成电路。
对于设计工程师来说,不仅是要知道所用产品的型号,而且还应熟悉生产这些产品的工艺,从而能够从一类放大器中选出一种放大器做特定的应用。
表1 给出了各种运算放大器结构的性能情况。
模块
目前使用几种工艺生产运算放大器,性能最高的放大器是以模块的形式由分立元件构成的。
因为使用分立元件,所以可选用像高压输出晶体管、超低电流的FET管以及阻值很高的电阻等等这类专门制作的元件。
在模块的设计中,在电气测试时(密封之前)通过对直流参数(比如失调电压)或交流参数(比如建立时间)进行细调的方法来选择电阻和电容是可能的。
模块工艺的缺点是实际的尺寸较大和价格高。
由于每个模块都是单独构成的,大量加工制造是不现实的,并且制造成本相对地也是很高的,但是对于那些对性能有极高级别要求的特殊应用来说,由于模块运算放大器的规范由生产厂来保证,所以它们还是有吸引力的。
模块运算放大器包括斩波稳定放大器、可变电抗静电计放大器和宽带高速放大器。
斩波稳定放大器
当需要放大(或缩小)电平极低的电压信号时,要使用斩波放大器。
斩波放大器的内部是交流耦合的--有效的差动输入信号被斩波成方波,这个方波被解调和放大。
交流耦合消除了许多与运放有关的误差,因此失调和漂移极低。
斩波放大器的主要性能指标:
低失调电压 10 A
低失调漂移 0.1 V/℃
长期稳定性 1 V/年
高开环增益 107V/V
低温升漂移 3 V
静电计放大器
当需要尽可能高的输入阻抗和最低的偏置电流时,要使用静电计放大器。
静电计放大器内部也是交流耦合的,输入信号被加到包括低漏流的变容二极管(电压可变电容)的电桥上,该电桥由高频载波信号所激励。
输入电压引起电桥的不平衡,合成的交流误差信号被交流耦合到下一级,在那里被同步解调和放大。
使用低漏流可变电容产生的输入电流低至10fA(1fA=10-15A),获得这样的低电流是以较高的失调电压为代价的。
高速放大器
用模块的形式可以很容易地构成高速放大器,集成电路结构的许多限制在这里不适用。
例如,集成电路放大器由生产厂制作工艺造成的晶体管缺陷而引起的速度限制就不存在,模块的设计就可以使用具有所要求频响的经挑选的晶体管,由于许多宽带放大器被用在驱动75 负载的视频领域,所以必须提供大的输出电流。
对于这样输出特性所要求的功率,靠模快的较大热媒质来耗散要容易得多。
超高速放大器性能如下:快的建立时间 100ns(到0.01%)
转换速率 1000V/ s
全功率带宽 10MHz
输出电流 10mA
混合放大器
很多与模块结构同样的好处也适用于混合放大器,和模块的情形一样,可以把单一封装里用不同的(以及不相容的)工艺制作的元件组合起来,混合结构超过模块结构的优点是有较小的尺寸和较低的成本。
通常把混合工艺应用于运算放大器是为了改善偏置电流、输出驱动能力或有超过单片或分立设计器件的带宽。
混合FET输入运算放大器:
低偏置电流达75fA
低失调电压达0.25mV
低漂移达3 V/℃
适中的成本 5~10美元的范围内
直至最近,多数由精密匹配的FET差动放大器组成的FET输入放大器被单片运算放大器所取代,尽管现在能够用双极兼容工艺制造结型场效应管,但最高精度的JFET输入运放仍旧用混合工艺技术制成。
尽管能够购买一对分立的低漏流的FET管,并把741运放接在这一级的后面,但通常由混合单元可以获得更好的性能。
例如,混合电路的规范由生产厂来保证并测试,任何需要的调整一般也由生产厂来完成,当然,一块封装好的混合放大器不比741占据更多的空间,而性能上却呈现数量级的增长。
宽带混合放大器
●可以在较小的封装里进行成对的模块设计在芯片形式上使用分立晶体管
●适用于视频应用
混合工艺也允许放大器由一批分立的高频晶体管构成,实际上,在采用与模块一样元件的混合形式中,使模块放大器电路成对也是可能的,但要采用未封装的芯片的形式。
模拟器件公司的计算机实验室生产了各种各样的适合于视频应用的宽带混合放大器。
单片集成运算放大器
使用最广的运放是单片集成电路型,各种各样的集成电路运放是由许多不同的卖主处得到的,这些年来,设计和工艺方面的改善促使很高性能运放的形成,由于供特定应用所要求的运放规范常常支配选择最好的运放工艺,所以对于运放的用户来讲,至少要了解在集成电路运放制作中所采用的各种工艺,是很有用的。
各种工艺的比较列于表2。
一、标准的双极工艺
在大多数运放中使用的是标准结隔离的双极工艺,生产三种基本晶体管:高质量的纵向NPN晶体管、高质量的纵向PNP管和质量稍差的横向PNP晶体管。
由于纵向PNP管的集电极常常要接到负电源上,所以限制了它的实用性,这样,在放大器电路的其它地方能被采用的两种晶体管就是纵向NPN和横向PNP。
横向PNP管的性能指标较低(和fT 低),它基本上是用在偏置电路中,所以,在尽可能多的有效信号通道中使用的就是NPN管。
采用标准双极晶体管的放大器,其基流一般在100nA到1 A的范围内,有相当低的失调电压和漂移,以及低电压噪声。
这类放大器的实例有741和301等。
二、超工艺
超工艺是标准的双极性工艺的一种补充。
利用一个附加的扩散步骤,就可以生产值为几千的NPN 晶体管,输入偏置电流降低约一个数量级,达到10nA或更低。
输入级增大的增益降低了输入偏置电流,并改善了共模抑制能力,这是精密放大器的两个重要规范。
超运放的典型开环增益为几兆,共模抑制比超过100dB,输入失调电压特性类似于或超过标准的双极型运放。
超放大器的例子有308、AD510和AD517等。
三、介质隔离双极型
在常规的双极性和超集成电路中,各个晶体管是利用反相偏置的p-n结彼此隔离的,限制横向PNP 晶体管(并且归根结底限制放大器)的带宽的是这些寄生电容。
介质隔离(DI)工艺利用薄氧化层来提供晶体管之间的隔离,于是使得制造高速PNP晶体管进而生产高速放大器成为可能。
然而DI工艺不是没有其局限性的,氧化层很容易被静电放电击穿,结果导致器件的损坏。
另一个缺点是DI电路比p-n结隔离的等效电路需要更大的几何面积,结果要求稍大一点的芯片尺寸。
四、BIFET工艺
BIFET工艺使用离子注入,在同时包含标准的双极型器件的芯片上,制作高击穿电压的结型场效应晶体管(JFET),可以把这样一对JFET管用作运放的输入器件,通常是以牺牲失调电压、漂移、CMR和噪声指标来获得其它一些性能。
较新的设计为工厂修正BIFET运放的失调电压和漂移提供了可能。
一些精密的
BIFET型放大器的实例有AD542、AD544、AD547和双运放AD642、AD644、AD647。
五、BI-MOS工艺
由于JFET能被用作高阻抗的输入级,人们可能很想考虑把MOSFET管用于同一目的,某些厂商开发出能使MOSFET包含在双极型集成电路上的生产工艺。
理想状态MOSFET管仅有氧化物漏流而没有JFET中的结漏流。
这一漏流低得多,可能使输入偏置电流降低,然而,MOSFET是种ESD敏感器件,它要求在输入级上有二极管保护,常常是这些二极管呈现的漏流至少像JFET输入放大器的输入偏置电流一样大,而且在音频频谱内,MOSFET往往是比JFET更多的噪声源,而且直流失调很难控制。
当MOSFET被用于一个运放的输出级时,它能使输出摆动到接近于电源电压。
在常规的双极型输出级中,输出摆幅受饱和电压和其它影响的限制。
重要的一点是,要注意必须给MOSFET输出级加一点载荷,以减少它对RON的影响。
六、CMOS工艺
放大器全部由MOSFET管构成也是可能的,但如果按着传统的运放设计来构成,则这些放大器表现的性能很差。
较新的设计是使用CMOS开关和外部电容来提供失调电压抵消,这类似于在斩波稳定放大器中使用的方法,这种设计有噪声高、输出能力差和限制电源电压范围的缺点。
七、激光修正
激光修正技术可以适用于上述的芯片上含有薄膜电阻的任何一种形式的放大器,通过修正一对电阻中的一个电阻,可以调整差分输入级中的工作条件,以便降低失调电压。
这种技术使得常规生产的双极输入运放,可保证具有低至25 V的失调电压,而高性能的BIFET放大器可保证只有250 V的失调。
经失调调整的放大器能够制成精密的电路而不需要外部失调调节。
外部调节常常易遭受电位器不稳定、机械冲击以及意外的失调等影响。
八、“Zener-Zap”修正
修正失调电压的另一种方法是所谓的“Zener-Zap”修正。
在激光修正中,是通过修正电阻来改变双极型差分级中的射极电流。
在“Zener-Zap”中,用计数的方法(类似于DAC)调整一系列电流源以造成电流的平衡,从而形成了最低的失调电压。
当通过检测设备规定了电流源的正确组合时,把高压脉冲加到期望的电流源上,来对它们实行永久编程。
“Zener-Zap”唯一不利的方面就是可编程电流源比一对薄膜电阻要求占用更大量的芯片面积,因而它不适用于用做需线形调节的数据变换器,其优点是它不要求薄膜淀积工艺步骤。
AD OP-07是“Zener-Zap”修正运放的一个例子。