第六章数据采集常用电路
- 格式:ppt
- 大小:624.50 KB
- 文档页数:44
题目七:数据采集电路与程序设计一、实验目的⑴掌握 A/D 转换与微机接口的应用方法; ⑵了解A/D 芯片0809转换性能及编程方法; ⑶通过设计掌握如何进行数据采集。
二、实验要求基本要求:通过实验仪上的W1电位器提供模拟量电压给实验仪上的0809做A/D 转换,将模拟量转换成数字量,在LED 数码管的左4位显示0809字样,右两位显示数字量扩展要求:通过发光二极管L1~L8 显示数字量三、实验仪器1.PC 机一台2.微机原理式实验开发系统 一台 3.Usb 数据线一条四、实验原理A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D 转换器,精度、速度、价格适中;三是并行A/D 转换器,速度快,价格也昂贵。
实验用ADC0809 属第二类,是8 位A/D 转换器。
每采集一次一般需100μs 。
由于ADC0809 A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8088中断信号相连,可以用中断方式读取A/D 转换结果。
123CBAIN31IN42IN53IN64IN75START 6EOC 7D38OE 9CLK 10VCC 11VREF+12GND13D114D215VREF-16D017D418D519D620D721ALE 22ADD C 23ADD B 24ADD A 25IN026IN127IN228A D C 0809C C NU18VCCCLKD0D1D2D3D4D5D6D7EOCADDAADDBADDCWRRD231SN74LS02NU24A564SN74LS02NU24B DS24470R72IN7IN5IN3IN0CS500K(B2)(D2)0-5VA0A1A2P1.2CS1(0F000H)图5-1 A/D 数据转换采集电路接线图五、实验步骤1.将微机原理实验开发系统实验箱接上电源。
2.PC 机上启动星研电子,新建工程 (注意设置工程保存路径)3.观察工程文件结构,查看相应文件。
第六章 数据采集6.1 概述在计算机广泛应用的今天,数据采集的重要性是十分显著的。
它是计算机与外部物理世界连接的桥梁。
各种类型信号采集的难易程度差别很大。
实际采集时,噪声也可能带来一些麻烦。
数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
6.1.1 采样频率、抗混叠滤波器和样本数。
假设现在对一个模拟信号x(t) 每隔Δt时间采样一次。
时间间隔Δt被称为采样间隔或者采样周期。
它的倒数1/Δt 被称为采样频率,单位是采样数/每秒。
t=0, Δt ,2Δt ,3Δt ……等等,x(t)的数值就被称为采样值。
所有x(0),x(Δt),x(2Δt )都是采样值。
这样信号x(t)可以用一组分散的采样值来表示:下图显示了一个模拟信号和它采样后的采样值。
采样间隔是Δt,注意,采样点在时域上是分散的。
图6-1 模拟信号和采样显示如果对信号x(t)采集N个采样点,那么x(t)就可以用下面这个数列表示:这个数列被称为信号x(t)的数字化显示或者采样显示。
注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δt)的信息。
所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号x(t)的频率。
根据采样定理,最低采样频率必须是信号频率的两倍。
反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。
如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和恩奎斯特频率之间畸变。
图6-2显示了一个信号分别用合适的采样率和过低的采样率进行采样的结果。
采样率过低的结果是还原的信号的频率看上去与原始信号不同。
这种信号畸变叫做混叠(alias)。
出现的混频偏差(alias frequency)是输入信号的频率和最靠近的采样率整数倍的差的绝对值。
a 足够的采样率下的采样结果b 过低采样率下的采样结果图6-2 不同采样率的采样结果图6-3给出了一个例子。
数据采集电路的设计A/D转换器是将模拟电压或电流转换成数字量的器件或装置。
它是一个模拟系统和计算机之间的接口,它在数据采集和控制系统中得到了广泛的应用。
常用的A/D转换方式有主次逼近式和双斜积分是式,前者积分时间短,但是抗干扰能力较差;后者转换时间长,抗干扰能力抢。
在信号变化缓慢,现场干扰严重的场合,宜采用后者。
A/D转换的主要指标有转换时间、分辨率、线性误差、量程、对基准电源的要求等。
在本章节主要介绍8位A/D转换器ADS831、12位A/D转换器AD574以及高速A/D转换电路。
第一节:8位AD电路的一般设计ADS831是TI公司推出的8位80MHz高速采样模数转换芯片。
本节主要介绍ADS831的性能特点、内部结构,给出处理器MSP430x16x和ADS831构成的数据采集系统的硬件设计电路。
ADS831是TI公司推出的一种高速8位CMOS工艺的模数转换器(ADC)。
该芯片采用单一+5V供电,内部带有取样保持电路。
与早期的ADC芯片相比,ADS831采用流水线结构,因而具有极高的采样速率和转换速度、采样速率可高达80MHz。
内部包含时钟电路、8位线性A/D核、校正逻辑单元、三态输出单元以及其内部参考源。
内部结构如图2-1所示:图2-1 ADS831的逻辑框图ADS831硬件电路设计输入调理电路设计该模块由衰减网络和三级不同增益的运放电路组成,通过继电器切换,实现衰减、直通和小信号放大的功能。
三级电路均采用OPA690精密仪表放大器构成,该运放具有输入阻抗高、低噪声、速度快等优点,增益带宽积达500MHz。
第一级运放构成射级跟随器,输入阻抗3.5MΩ,第二级运放放大系数约为5倍,第三级运放当放大系数约为10倍,级联实现约50倍放大增益,最终将输出电压峰-峰值保持在1.6V左右。
单元电路如图2-2所示。
图2-2输入调理电路设计采样保持电路设计将A/D转换器设计成单极性输入,采用ADS831内部基准源REFT(+3V)和运放OPA2652构成2.5V恒压源,从而使采样电压有效值保持在+2.5 V。
电气工程学院课程设计数据采集电路的设计学生姓名韩章强学号2013411107学院电气工程学院指导老师雷继海专业测控技术与仪器答辩日期测控电路课程设计任务书一、设计目的根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。
二、任务与要求设计一个数据采集电路,满足以下条件:1.结合单片机的课程,选用ADC0808A/D转换器,采集输入实时电压,用四位的共阴数码管显示,并设计完整电路以及程序,仿真调试。
2.设计的精度为小数点后两位,输入电压的范围是0-5v,要求电路图简单合理。
三、进程安排1.布置任务、查阅资料,方案设计根据设计要求,查阅参考资料,进行方案设计及可行性论证,确定设计方案,2.上机在Multisim境下按要求进行设计。
3.总结报告四、所需调试工具Keil和Multisim软件。
目录测控电路课程设计任务书 (1)1 课程设计要求 (4)2 89C51单片机简介 (4)2.1ADC0808转换器简介 (4)2.2引脚功能 (5)2.3A/D转换原理 (6)3 时钟电路 (6)3.1复位电路 (6)3.2LED显示电路 (7)4 仿真设计图 (7)5 仿真心得 (8)6 程序 (8)6.1程序调试 (11)参考文献 (11)致谢 (12)摘要:数据采集与显示系统是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。
然后利用处理器处理,最后在显示出来。
数据采集与显示技术广泛应用在各个领域。
被采集数据是已被转换为电讯号的各种物理量,如电压、温度、水位、风速、压力等,可以是模拟量,也可以是数字量。
采集的数据大多是瞬时值,也可是某段时间内的一个特征值。
准确的数据测量是数据采集的基础。
南京理工大学科目现代测量技术与误差分析学院姓名学号2011年05月06日一种基于AT89S52的数据采集系统电路设计摘要本数据采集系统是以单片机AT89S52 为控制核心的四通道数据采集系统,该数据采集系统具有电路简单、功耗低、可靠性高等优点,能实现对多路模拟通道信号的数据采集与处理。
并将采集的数据送经F/V变换电路,使得低频率信号转换为目标电压,从而驱动控制电机。
关键词:单片机,数据采集系统一.主要功能指标和系统方案选择1.信号产生器指标分析由于测试用信号发生器相对独立,可以先进行设计,这部分必须完成两个模块的工作:一是低频正弦波的产生;二是F/V变换电路。
在这里低频正弦波的产生可以依赖于现有的芯片完成。
ICL8038是一款常见的单片集成函数发生器,其工作频率范围在几赫兹至几千赫兹之间,可同时输出方波、正弦波、三角波3种波形,配以简单的外围电路,能实现输出频率的线性调节,因此,对于该题目,单片集成发生器是一种叫理想的选择。
对于F/V变换器来说,高性能、低成本的LM331是理想的选择。
加上输出电压的线性调整电路,就可得到较好的实现方案。
2. 四通道数据采集的指标分析常见的数据采集系统提出采用上位机和下位机两层结构模式。
下位常采用单片机完成前端的多路数据采集,上位机则通常用PC机或工控机来实现系统的控制和相关的数据处理机结果显示。
有线常用RS-232或RS-485正弦协议等,其上可以运行地址或数据等不同的信号类型,之间采用分时或编码的方式加以区分。
用于采用主从双MCU系统,所以这部分问题的核心在于选择什么芯片。
题目要求采样四通道,精度为4位。
因此可以采用8位的ADC芯片,在于MCU揭开问题上,常有并行接口和串行接口两中方式。
这里选用RS-485,因为它采用差分传输,两根传输线,有效距离很广,同时能方便扩展多个从机设备。
3. 总体设计方案图1是数据采集系统原理框图,它由变送器、A/D转换和LM331转换器、单片机及驱动控制构成。
第六章数据采集技术对于智能仪器来讲,输入的信号大多数是模拟信号,而且模拟信号处理要比数字信号复杂的多。
模拟信号的输入也叫做数据采集系统。
由于许多内容,在前边相关课程中已经学过,如放大电路,A/D转换等,所以有的内容不讲或者讲些实例,或讲一些使用的内容。
第一节输入信号的形式模拟信号是比较复杂的,由传感器输出的信号,大多数是mV级的电压信号,如应变仪,热电偶等;也有信号较强的。
许多传感器输出的是0-20mA或4-20mA的电流信号,因为电流对辐射噪声和引线电阻上的压降不敏感,信号可以传输较远的距离。
(为什么选择4-20mA而不是0-20mA呢?为了减少接线的复杂性,传感器选择2线要比多线简单的多,2线既要传输信号,又要给传感器供电,所以设计者从中盗窃4mA电流给传感器放大电路供电,这样4-20mA的标准就确定了。
)一般是将电压信号转变为电流信号,在进入微处理器以前,还得变成电压信号。
变换的方法:1.无源I/V变换最简单的是用精密电阻,如用250Ω的精密电阻,可以将4-20mA转换成1-5V。
无源I/V变换电路是利用无源器件—电阻来实现,加上RC滤波和稳压二极管限幅等保护。
右图为0-10mA转变成0-5V的电路,对于0- 10 mA输入信号,可取R1=100Ω,R2+RP=500Ω,这样当输入电流在0 -10 mA量程变化时,输出的电压就为0 -5 V范围,RP用于调整输出电压值。
该方法提供的电流较小。
要求信号输出时阻抗很大,即输出电流几乎为零。
要求后面的电路输入阻抗很大。
2. 有源I/V变换有源I/V变换是利用有源器件——运算放大器和电阻电容组成,如图所示。
利用同相放大电路,把电阻R1上的输入电压变成标准输出电压。
该同相放大电路的放大倍数为:A=1+R4/R3若输入电流I 的0-10 mA,R1=200Ω,由R1将电流变成0-2V电压,取R3=100kΩ,R4=150kΩ,就对应电压输出V的0-5 V;若取R1=200Ω,R3=100kΩ,R4=25kΩ,则4-20 mA的输入电流对应于1-5 V的电压输出。
配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。
由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。
其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。
3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。
图2-1 DSTATCOM 系统总体硬件结构框图2.2.11 常用电网电压同步采样电路及其特点.1 常用电网电压采样电路1从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。
常用电流和电压采样电路2常用采样电路设计方案比较图2-2 同步信号产生电路1从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。
其中R 5=1K Ω,5pF,则时间常数错误!未因此符合设计要求;第二部分由电压比较器LM311构成,实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。
C 4=1找到引用源。
<<l ms,[1]2.1电网电压采样电路2.2 常用常用电网电压同步信号采样电路2如图2-3所示。
数据采集分析系统及数据采集电路摘要:数据采集分析系统是一种可以控制和监测信息的集成系统,它可以对物理和化学过程进行监测和控制,并将采集到的数据进行分析和处理。
为了实现数据采集和传输,数据采集电路是必不可少的。
数据采集电路可以将传感器、控制器等组件的电信号转换为数字信号,以便计算机等设备进行处理和分析。
本文将分别介绍数据采集分析系统和数据采集电路的基本原理,旨在提出可借鉴化建议。
关键词:数据采集分析;数据采集电路;概况随着信息化的快速发展,数据采集及其分析已成为现代社会中广泛使用的技术手段之一。
数据采集是指从实际生产、生活中采集、收集和处理各类信息的过程,可以从中获取有关目标物理参数的信息,并将其转化为数字信号。
数据采集分析系统,是以计算机技术为基础,通过对各种实时感应设备收集到的数据进行分析、处理、传输和储存,实现数据可视化展示,提供特定的分析报告及应用逻辑。
数据的采集分析在电子商务、物流、汽车等多个领域中有广泛应用,能够提高生产效率、节约资源成本、提升服务质量、降低人工成本。
一、数据采集分析概况数据采集电路是实现数据采集的基础,主要是通过模拟信号转换为数字信号的方式,将各种实际物理参数转化为数字信号,并通过芯片组合的方式,对数据进行采集、储存、传输和处理。
数据采集电路一般由传感器、信号调理电路、模数转换器、信号处理器和通讯接口等多个组成部分构成。
其中,传感器是数据采集电路的核心部件,主要用于将实际物理参数转化为电信号,在采集过程中发挥关键作用。
信号调理电路则用于对传感器输出的电信号进行放大、去噪和滤波等处理,以便提高信号质量。
模数转换器则是将模拟信号转换为数字信号,并通过信号处理器进行数字处理,得出输出结果。
通讯接口则用于数据的传输和与其他系统的连接。
数据采集分析系统及数据采集电路是实现物理参数采集和数据分析、处理、传输的关键技术,它们的应用不仅能提高生产效率和服务质量,而且能够节约资源成本、降低人工成本,对现代产业和社会的发展具有重要和积极的影响。