高三化学化学平衡2
- 格式:pdf
- 大小:954.65 KB
- 文档页数:8
高三化学化学平衡与酸碱理论总结与应用化学平衡与酸碱理论是高中化学学习的重要内容。
在高三化学学习的过程中,我们对化学平衡与酸碱理论进行了深入学习和理解,并通过实验和练习运用到实际问题中。
本文将对高三化学学习中所掌握的化学平衡与酸碱理论进行总结,并介绍其应用。
一、化学平衡理论总结1. 化学平衡的概念与特征化学平衡是指化学反应在达到一定条件下,反应物与生成物之间的浓度、压强、物质的量等不再发生变化,但反应仍在进行中的状态。
其特征包括反应物与生成物浓度不再发生变化,正反应速率相等,反应物与生成物浓度的比值(摩尔比)恒定等。
2. 平衡常数与平衡常数表达式平衡常数是指在特定温度下,反应物与生成物的浓度之比的特征值。
平衡常数表达式可以根据反应物与生成物的物质的量关系推导出来,并且可以根据平衡常数的数值判断反应的偏向性。
3. 影响化学平衡的因素影响化学平衡的因素主要包括温度、压强(或浓度)、物质的量。
温度的升高对反应的平衡常数有显著影响,可根据平衡常数表达式判断。
压强或浓度的变化也会导致化学反应向某一方向移动,达到新的平衡。
4. 平衡的移动与Le Chatelier原理Le Chatelier原理是指当外界对于处于平衡状态下的反应体系施加压力时,体系将向能够减小压力的方向移动,以重新建立平衡。
根据Le Chatelier原理,当外界改变了化学体系各个因素时,反应体系会对这种改变做出相应调整,以达到新的平衡。
二、酸碱理论总结与应用1. 酸碱的定义酸是指能够释放出H+离子的物质;碱是指能够释放出OH-离子的物质。
根据酸碱离子的释放特征,出现了亚硫酸离子、铝酸离子等酸和氢氧根离子、磷酸根离子等碱的定义。
2. 酸碱反应酸碱反应是指酸与碱之间发生的化学反应。
常见的酸碱反应包括中和反应和盐类的生成等。
中和反应是指酸和碱的反应,生成相应的盐和水。
酸碱反应具有明显的酸碱指示剂变色现象,能够通过指示剂变色和pH值来判断溶液的酸碱性。
龙文教育一对一个性化辅导教案化学平衡2一、教学衔接 二、教学过程知识点1反应热的计算1.内容:不管化学反应是一步或分几步完成,其反应热是的。
或者说,化学反应的反应热只与反应体系的和有关,而与反应的无关。
如物质A 变成C ,有下列两种途径:则有ΔH 1=。
2.解释:能量的释放或吸收是以发生变化的物质为基础的,二者密不可分,但以物质为主。
3.应用:对于进行得很慢的反应,不容易直接发生的反应,产品不纯(即有副反应发生)的反应,测定这些反应的反应热有困难,如果应用盖斯定律,就可以间接地把它们的反应热计算出来。
应用盖斯定律设计反应过程的要点(1)当热化学方程式乘以或除以某数时,ΔH 也相应乘以或除以某数。
(2)当热化学方程式进行加减运算时,ΔH 也同样要进行加减运算,且要带“+”、“-”符号,即把ΔH 看做一个整体进行运算。
(3)通过盖斯定律计算比较反应热的大小时,同样要把ΔH 看做一个整体。
(4)在设计的反应过程中常会遇到同一物质固、液、气三态的相互转化,物质的状态由“固→液→气”变化时,会吸热;反之会放热。
(5)当涉及的反应逆向进行时,其反应热与正反应的反应热数值相等,符号相反。
例1由金红石(TiO 2)制取单质Ti ,涉及到的步骤为:TiO 2TiCl 4−−−−→−ArC /800/0镁Ti 已知:① C (s )+O 2(g )=CO 2(g ); ∆H =-393.5 kJ ·mol -1② 2CO (g )+O 2(g )=2CO 2(g ); ∆H =-566 kJ ·mol -1③ TiO 2(s )+2Cl 2(g )=TiCl 4(s )+O 2(g ); ∆H =+141 kJ ·mol -1则TiO 2(s )+2Cl 2(g )+2C (s )=TiCl 4(s )+2CO (g )的∆H =。
例2已知:①CH 4(g)+2O 2(g)===CO 2(g)+2H 2O(l) ΔH 1;②2H 2(g)+O 2(g)===2H 2O(g) ΔH 2;③2H 2(g)+O 2(g)===2H 2O(l) ΔH 3。
高三化学平衡必考知识点在高三化学学习中,平衡是一个非常重要的概念和知识点。
平衡是指反应物和生成物在化学反应中达到动态平衡的状态,在该状态下,反应物和生成物的浓度保持稳定,不随时间的变化而变化。
下面,将详细介绍高三化学平衡的必考知识点。
一、化学平衡的条件化学平衡的条件主要有两个:动力学条件和热力学条件。
动力学条件要求反应物质的摩尔数比为化学方程式中的比例关系,而热力学条件则要求在平衡状态下反应的自由能变化为零。
二、平衡常数和平衡常量平衡常数是化学反应在平衡状态下,由反应物浓度与生成物浓度之比所确定的一个常数,用K表示。
平衡常数与温度有关,只有在一定的温度下才能确定。
平衡常数K越大,说明反应物转化为生成物的趋势越强,反之,K越小,说明反应物转化为生成物的趋势越弱。
三、平衡常数的计算在学习化学平衡时,计算反应物浓度与生成物浓度的比例是非常重要的。
平衡常数的计算需要根据给定的反应物浓度或生成物浓度来确定相应的比例关系。
通常使用化学平衡式和给定数值进行计算,得到平衡常数K的数值。
四、浓度与平衡常数的关系浓度与平衡常数的关系是化学平衡的一个重要内容。
当给定反应物或生成物浓度发生变化时,平衡常数K的数值也会发生相应的变化。
增加反应物浓度或减少生成物浓度,会导致平衡常数K 的数值减小;相反,减少反应物浓度或增加生成物浓度,会导致平衡常数K的数值增大。
五、平衡的移动在化学反应中,平衡的移动是一个重要的现象。
当改变反应条件时,反应物质的浓度发生变化,从而导致平衡位置的移动。
常见的改变反应条件的方法有:改变系统的温度、压力、反应物质浓度和引入催化剂。
六、速率与平衡的关系在化学反应中,速率是一个重要的指标,它与平衡状态有一定的关系。
在平衡状态下,反应物和生成物的浓度保持稳定,速率为零。
只有在不断改变反应条件下,才能导致速率不为零,从而使平衡位置发生变化。
七、平衡的移动方向和反应焓变平衡移动的方向与反应焓变也有关系。
当反应焓变为正值时,平衡位置向右移动;反之,当反应焓变为负值时,平衡位置向左移动。
2025届高三化学一轮专题复习讲义(12)专题三基本理论3-5 化学平衡(二)(1课时,共2课时)【复习目标】1.了解化学平衡常数(K)的含义,能利用化学平衡常数进行相关计算。
2.理解外界条件(浓度、温度、压强、催化剂等)对化学平衡的影响,能用相关理论解释其一般规律。
3.了解化学平衡的调控在生活、生产和科学研究领域中的重要作用【重点突破】1.能运用平衡移动原理,解决生活中的相关问题,讨论化学反应条件的选择和优化。
综合考虑化学反应速率、原料利用率、设备要求、催化剂的活性等,控制合适的反应条件。
2.联想外界条件的改变对化学反应速率和化学平衡的影响规律,根据图像中表现的关系与所学规律相对比,做出符合题目要求的判断。
能充分考查学生读图、提取信息、解决问题的能力。
【真题再现】例1.(2023·江苏卷)二氧化碳加氢制甲烷过程中的主要反应为CO2(g)+4H2(g)===CH4(g)+2H2O(g) △H=-164.7kJ·mol-1CO2(g)+H2(g) ===CO(g)+H2O(g) △H=41.2kJ·mol-l在密闭容器中,1.01×10-5Pa、n起始(CO2)︰n起始(H2)=1︰4时,CO2平衡转化率、在催化剂作用下反应相同时间所测得的CO2实际转化率随温度的变化如题13图所示。
CH4的选择性可表示为n生成(CH4)n反应(CO2)×100%。
下列说法正确的是A.反应2CO(g)+2H2(g)===CO2(g)+CH4(g)的熔变△H=-205.9kJ·mol-1B.CH4的平衡选择性随着温度的升高而增加C.用该催化剂催化二氧化碳反应的最佳温度范围约为480~530℃D.450℃时,提高n起始(H2)n起始(CO2)的值或增大压强,均能使CO2平衡转化率达到X点的值解析:A项,由盖斯定律可知反应2CO(g)+2H2(g)===CO2(g)+CH4(g)的焓变△H=-2×41.2 kJ·mol-1-164.7 kJ·mol-1=-247.1 kJ·mol-1,错误;B项,CO2(g)+4H2(g)===CH4(g)+2H2O(g)为放热反应,升高温度平衡逆向移动,CH4的含量降低,故CH4的平衡选择性随着温度的升高而降低,错误;C项,由图可知,已知条件之下,该催化剂催化二氧化碳反应温度范围约为380℃时二氧化碳转化率最大,此时为最适温度,温度继续增加,催化剂活性下降,错误;D项,450℃时,提高n起始(H2)n起始(CO2)的值可提高二氧化碳的平衡转化率,增大压强反应I平衡正向移动,可提高二氧化碳的平衡转化率,均能使CO2平衡转化率达到X点的值,D正确。
高中化学平衡知识点整理在高中化学学习中,平衡是一个十分重要且基础的概念。
平衡反应是指在一个封闭系统中,反应物转变为生成物的速率相等时达到的一种动态平衡状态。
平衡反应又可以细分为物理平衡和化学平衡。
下面对高中化学平衡知识点进行整理。
1. 平衡反应的特点在平衡反应中,反应物和生成物的浓度保持不变,但它们仍在转化,并处于动态平衡状态。
平衡反应的速率恒定且相等,这也是动态平衡的一种表现。
2. 平衡常数平衡常数是用来描述一个反应达到平衡时反应物和生成物浓度的比例。
平衡常数通常用Kc、Kp来表示,取决于反应方程式中各物质的浓度或分压。
3. 影响平衡位置的因素平衡位置的位置取决于平衡常数以及反应温度、压力等因素。
当平衡常数Kc大于1时,表示生成物浓度较高;当Kc小于1时,表示生成物浓度较低。
4. 平衡常数的计算平衡常数的计算需要通过反应方程式来确定各物质浓度或分压,从而得出平衡常数的数值。
平衡常数的大小可以告诉我们反应的进行方向。
5. 平衡位置的变化通过调节温度、压力或者浓度等因素,可以改变平衡位置。
Le Chatelier原理指出,在受到外界因素影响时,系统会通过调整以恢复平衡,以维持平衡动态状态。
6. 平衡常数与反应热力学反应在不同温度下的平衡常数会发生变化,这与热力学原理有关。
反应的焓变和熵变可以帮助我们理解平衡常数变化的原因。
以上就是对高中化学平衡知识点的整理,希望可以帮助大家更好地理解平衡反应的相关概念。
学习化学需要多加练习和实验,加深对平衡反应的理解,有助于提高学习效果。
愿大家取得更好的成绩!。
高三化学一轮复习——化学平衡一、化学平衡的概念:在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组在成分的含量保持不变的状态叫做化学平衡。
1.“等”——处于密闭体系的可逆反应,化学平衡状态建立的条件是正反应速率和逆反应速率相等。
即v(正)=v(逆)≠0。
这是可逆反应达到平衡状态的重要标志。
2.“定”——当一定条件下可逆反应一旦达平衡(可逆反应进行到最大的程度)状态时,在平衡体系的混合物中,各组成成分的含量(即反应物与生成物的物质的量,物质的量浓度,质量分数,体积分数等)保持一定而不变(即不随时间的改变而改变)。
这是判断体系是否处于化学平衡状态的重要依据。
3.“动”——指定化学反应已达化学平衡状态时,反应并没有停止,实际上正反应与逆反应始终在进行,且正反应速率等于逆反应速率,所以化学平衡状态是动态平衡状态。
4.“变”——任何化学平衡状态均是暂时的、相对的、有条件的(与浓度、压强、温度等有关)。
而与达平衡的过程无关(化学平衡状态既可从正反应方向开始达平衡,也可以从逆反应方向开始达平衡)。
二、化学平衡的移动——勒沙特列原理:如果改变影响平衡的一个条件(如浓度、压强或温度),平衡就向着能够减弱这种改变的方向移动。
【例1】下列哪种说法可以证明反应N2 + 3H22NH3已达到平衡状态()A. 1个N≡ N键断裂的同时,有3个H - N键形成。
B. 1个N≡ N断裂的同时,有3个H - N键断裂。
C . 1个N≡ N 断裂的同时,有6个H - N 键断裂。
D. 1个N≡ N 键断裂的同时,有6个H - N 键形成。
【例2】 能够充分说明在恒温恒容下的密闭容器中,反应2SO 2+O 22SO 3已达平衡状态的标志是A.容器中SO 2、O 2、SO 3的物质的量之比为2:1:2B.SO 2 和SO 3的物质的量浓度相等 C .反应容器内压强不随时间变化而变化D .单位时间内生成2molSO 3 时,即生成1molO 2【例3】可逆反应: 3A (g )3B(?)+C(?)(正反应为吸热反应),随着温度升高,气体平均相对分子质量有变小趋势, 则下列判断正确的是A .B 和C 可能都是固体 B .B 和C 一定都是气体 C .若C 为固体,则B 一定是气体D .B 和C 可能都是气体【例4】密闭容器中一定量的混合气体发生反应:,平衡时,测得A 的浓度为0.50mol·L -1,在温度不变时,把容器容积扩大到原来的2倍,使其重新达到平衡,A 的浓度为0.30mol·L -1,有关叙述不正确的是( )。
化学反应速率和化学平衡第二讲化学平衡一、可逆反应1.概念:在条件下,既能向方向进行,同时又能向方向进行的反应称为可逆反应。
2.特点:(1) 在相同条件下进行的两个反应;(2) 反应有一定的限度,不能进行完全;(3) 只能得到反应物和生成物的混合物。
二、化学平衡状态1.化学平衡状态:在一定条件下的可逆反应,正反应和逆反应的速率相等,反应混合物中各组分的含量保持不变的状态。
2.化学平衡状态的特征:(1)“逆”:可逆反应。
(2)“等”:υ正=υ逆。
对于同种物质:该物质的生成速率=消耗速率;对于不同物质:某反应物的消耗(或生成)速率:某生成物的消耗(或生成)速率=化学计量数之比。
(3)“定”:平衡混合物中各组分含量(百分含量、物质的量、质量、浓度、反应物转化率等)不随时间变化。
(4)“动”:正逆反应都在进行,υ正=υ逆≠0,体系处于动态平衡。
(5)“变”:反应条件改变,正逆反应速率可能不再相等,平衡会发生移动,直至建立新的平衡。
(6)“同”:化学平衡的建立与反应途径无关(等效平衡)。
对于同一个可逆平衡,只要条件相同(温度、浓度、压强),不论从正反应方向开始,还是从逆反应方向开始,或从正、逆两个方向同时开始,均能达到同一平衡状态。
例如:相同条件下,对于可逆反应2SO2(g) + O2(g)2SO3(g),投料2 mol SO2和1 mol O2或投料2 mol SO3,最终达到同一平衡状态。
3.判断化学平衡状态的标志:(1)等速标志①υ正=υ逆(同一种物质);②某反应物的消耗(或生成)速率:某生成物的消耗(或生成)速率=化学计量数之比;(2)断键、成键角度(3)恒浓标志体系中各组成的物质的量浓度或体积分数、物质的量分数保持不变。
(4)特殊标志:压强、气体平均摩尔质量、气体密度、体系中气体的颜色等。
练一练1.下列方法中可以证明2HI(g) H2(g)+I2(g)已达平衡状态的是①单位时间内生成n mol H2的同时生成n mol HI;②一个H-H键断裂的同时有两个H-I键断裂;③百分组成HI%=I2%;④反应速率υ(H2)=υ(I2)=0.5υ(HI);⑤平衡浓度c(HI):c(H2):c(I2)=2:1:1;⑥温度和体积一定时,某一生成物浓度不再变化;⑦温度和体积一定时,容器内压强不再变化;⑧温度和体积一定时,混合气体的平均相对分子质量不再变化;⑨温度和体积一定时,混合气体的颜色不再变化;⑩温度和压强一定时,混合气体密度不再变化。
化学平衡知识点归纳高三网化学平衡是高中化学中的重要内容,是指在化学反应中,反应物与生成物浓度达到一定比例的状态。
在高三学习中,化学平衡是一个不可忽视的知识点。
本文将对高三化学学习中的化学平衡知识点进行归纳总结。
1. 平衡常数(K)平衡常数是描述化学平衡状态的数值,用K表示。
它是在一定温度下,反应物浓度与生成物浓度之间的比值的乘积。
平衡常数越大,表示生成物浓度较高,反应偏向生成物;平衡常数越小,表示反应物浓度较高,反应偏向反应物。
2. 反应商(Q)反应商是在任意时刻,反应物浓度与生成物浓度之间的比值的乘积,用Q表示。
与平衡常数K相比,反应商能够描述任意时刻反应物与生成物浓度的比例关系。
当Q=K时,反应处于平衡状态;当Q>K时,反应偏向反应物;当Q<K时,反应偏向生成物。
3. 影响化学平衡的因素(1)浓度:增加或减少某个物质的浓度,会导致平衡位置的变化。
根据Le Chatelier原理,浓度增加,平衡位置会移到生成物一侧;浓度减少,平衡位置会移到反应物一侧。
(2)温度:温度改变会影响平衡常数K的数值。
对于吸热反应,加热会使平衡常数增大;对于放热反应,加热会使平衡常数减小。
(3)压力(气相反应):对于气相反应,改变压力会导致平衡位置的变化。
增加压力,平衡位置会移到摩尔数较小的那一侧;减少压力,平衡位置会移到摩尔数较大的那一侧。
4. 平衡常数的计算平衡常数的计算需要根据给定的反应物和生成物浓度,利用化学方程式进行计算。
平衡常数的数值与温度有关,因此计算平衡常数时需要确定温度。
5. 平衡常数的应用平衡常数在化学平衡反应的研究和实际应用中有着重要的作用。
它可以用来判断反应的偏向性、预测平衡位置的变化、设计反应工艺等。
6. 化学平衡的移动方法根据Le Chatelier原理,可以通过改变温度、浓度、压力等因素来移动化学平衡。
例如,对于气相反应,增加压力可以通过减小体积或增加摩尔数较多的气体来实现;对于溶液反应,可以通过加入或减少某个溶质来改变浓度。
证对市爱幕阳光实验学校<化学平衡状态>知识整理【归纳与整理】一、可逆反1.概念:在条件下,既能向方向进行,同时又能向方向进行的反称为可逆反。
2.表示:采用“〞表示,如:Cl 2 + H2O H+ +Cl- + HClO3.特点:可逆反在同一体系中同时进行。
可逆反进行一段时间后,一会到达状态二、化学平衡状态在下的反里,正反速率和逆反速率相,反体系中所有参加反的物质的〔溶液中表现为〕保持恒的状态。
在平衡时,反物和生成物均处于中,反条件不变,反混合物的所有反物和生成物的或保持不变三、化学平衡的特征1.逆:研究对象必须是反2.动:化学平衡是平衡,即当反到达平衡时,正反和逆反仍都在进行(可通过证明)3.:正反速率于逆反速率>04.:反混合物中,各组分的或保持一5.变:化学平衡状态是有条件的、相对的、暂时的,改变影响平衡的条件,平衡会被破坏,直至到达的平衡。
6.同:在恒温时,根据化学方程式的化学计量关系,采用极限思维的方法,换算成反物或生成物后,假设对各物质的物质的量相同时,到达平衡后平衡状态相同。
无论投料从反物开始、从生成物开始、还是从反物和生成物同时开始。
四、化学平衡的标志1.本质标志对给的反:mA + nB pC + qD〔A、B、C、D均为气体〕,当v正= v逆时,有:即:q'vp'vn'vm'vqvpvnvmvDCBADCBA=======2.价标志〔1〕可逆反的正、逆反速率不再随时间发生变化。
〔2〕体系中各组成的物质的量浓度或体积分数、物质的量分数保持不变。
〔3〕对同一物质,单位时间内该物质所代表的正反的转化浓度和所代表的逆反的转化浓度相。
〔4〕对同一反而言,一种物质所代表的正反速率,和另一物质所代表的逆反速率的比值于它们的化学方程式中化学计量数之比。
3.特殊标志“特殊标志〞是指在特环境、特反中,能间接衡量某一可逆反是否到达化学平衡状态的标志。
离开上述界,它们不能作为一般反是否到达化学平衡的判断依据。