磁控溅射法制备薄膜材料综述
- 格式:doc
- 大小:86.50 KB
- 文档页数:7
实验磁控溅射法制备薄膜材料磁控溅射法制备薄膜材料的步骤如下:1.靶材选择:选择可以溅射制备薄膜的材料作为溅射靶材。
这些材料通常是单质金属、合金或化合物,如金、银、铜、铝、氧化物等。
2.基底处理:将制备薄膜的基底进行清洗和表面处理,以保证薄膜的附着力和质量。
3.靶材安装:将靶材安装在溅射器的靶架上。
4.真空抽气:将溅射室进行抽气,以建立良好的真空环境。
这可以防止杂质、气体和水分对薄膜质量的影响。
5.溅射气体调节:调节溅射气体(通常是氩气)的流量和压力,以维持合适的工作气氛。
6.加热基底:通过加热基底,可以提高薄膜附着力和晶体质量。
7.确定溅射条件:根据需要制备的薄膜材料,调节溅射功率、工作气氛和溅射时间等参数,以保持溅射过程的稳定和合适的溅射速率。
8.溅射过程:通过加大靶架上的电流,激发高能粒子与靶材相互作用,使靶材表面的原子蒸发并沉积在基底上。
9.薄膜测量:制备完成后,进行薄膜的物理、化学性质的测试和表征,如薄膜的厚度、表面形貌、晶体结构、成分等。
磁控溅射法制备薄膜材料具有以下优点:1.良好的控制性:可以通过调节溅射参数(如功率、压力等)来控制薄膜的结构和性质。
2.高纯度材料:由于溅射过程中没有反应,制备的薄膜材料具有高度的化学纯度。
3.多种材料选择:不仅可以制备金属薄膜,还可以制备合金、氧化物、硅等其他材料的薄膜。
4.优异的附着性:磁控溅射法制备的薄膜与基底之间具有较好的附着性,可以在多种基底上制备。
5.溅射速率高:与其他制备薄膜的方法相比,磁控溅射的溅射速率较高,制备时间较短。
磁控溅射法制备薄膜材料的应用非常广泛。
例如,浮法玻璃制备中使用的氧化物和金属薄膜、电子器件制造中的金属和半导体薄膜、太阳能电池中的透明导电膜、光学镀膜中的金属和二氧化硅薄膜等。
此外,磁控溅射法还可以用于制备多层薄膜、纳米结构薄膜以及复合薄膜等特殊结构的材料。
总结起来,实验磁控溅射法制备薄膜材料是一种简便、可控性强且应用广泛的方法。
《磁控溅射法制备透明导电氧化物薄膜及其性能研究》一、引言透明导电氧化物薄膜作为一种重要的功能材料,在光电、电磁、热学等领域具有广泛的应用。
近年来,随着科技的发展,透明导电氧化物薄膜的制备技术也在不断进步。
其中,磁控溅射法因其制备工艺简单、薄膜质量高、可重复性好等优点,成为制备透明导电氧化物薄膜的常用方法之一。
本文将详细介绍磁控溅射法制备透明导电氧化物薄膜的过程,并对其性能进行研究。
二、磁控溅射法制备透明导电氧化物薄膜2.1 实验材料与设备实验材料主要包括靶材(如氧化锡、氧化铟等)、基底(如玻璃、石英等)以及氩气等。
实验设备为磁控溅射镀膜机,该设备具有高真空度、高溅射速率、低损伤等特点。
2.2 制备过程(1)将基底清洗干净,放入磁控溅射镀膜机中;(2)将靶材安装在磁控溅射镀膜机的靶材托盘上;(3)将氩气通入磁控溅射镀膜机内,调整气压至合适范围;(4)开启磁控溅射镀膜机的电源,调节溅射功率和溅射时间;(5)当靶材表面开始发生溅射现象时,基底上的透明导电氧化物薄膜开始沉积;(6)在设定的时间结束后,关闭电源,停止溅射。
2.3 工艺参数优化在实验过程中,可以通过调整磁控溅射镀膜机的工艺参数(如溅射功率、溅射时间、工作气压等),来优化透明导电氧化物薄膜的制备过程。
在实验过程中,需要控制好各参数的配合关系,以获得最佳的薄膜质量和性能。
三、性能研究3.1 结构性能研究通过X射线衍射(XRD)技术对制备的透明导电氧化物薄膜进行结构分析。
通过XRD图谱可以确定薄膜的晶体结构、晶格常数等参数。
此外,还可以利用扫描电子显微镜(SEM)观察薄膜的表面形貌,分析薄膜的致密性和颗粒大小。
3.2 电学性能研究通过四探针法测量透明导电氧化物薄膜的电阻率、方块电阻等电学性能参数。
同时,还可以通过霍尔效应测试等方法研究薄膜的载流子浓度、迁移率等电学性质。
通过这些研究,可以评估薄膜的导电性能及其在器件中的应用潜力。
3.3 光学性能研究通过紫外-可见光分光光度计(UV-Vis)测量透明导电氧化物薄膜的光学性能参数,如透光率、反射率等。
磁控溅射薄膜镀层制备与表征研究随着工业化水平的不断提高,新材料的应用越来越广泛,其中薄膜材料作为一种性能优异的材料,近年来得到了广泛的关注和研究。
在薄膜材料的制备方法中,磁控溅射被认为是一种比较有效的薄膜制备方法。
本文将着重介绍磁控溅射薄膜镀层制备和表征研究的相关内容。
一、磁控溅射薄膜镀层制备原理磁控溅射薄膜镀层制备是通过利用磁控溅射技术,在高真空环境下将材料蒸发成为原子或离子状,然后通过惰性气体的激发及其它的物理化学反应,将蒸发的材料沉积于基片上的方法。
具体过程如下:首先,将待镀材料放入溅射室,将气压降至10^-4Pa以下,然后通过加热或电弧加热等方法使得材料蒸发形成离子或原子状,然后利用磁场的作用将离子或原子束引向基片上,同时惰性气体如氩气等也被引入到系统中,惰性气体分子与离子或原子束碰撞后又被激发形成粒子,并沉积在基片表面上,形成具有一定厚度和微结构的薄膜。
二、磁控溅射薄膜镀层的优点相比于其它的薄膜材料制备方法,磁控溅射薄膜镀层有以下优点:1、镀层质量高:利用磁控溅射技术,可以获得镀层晶粒尺寸小,致密度高,硬度大,附着力好的高品质薄膜。
2、复合性强:磁控溅射技术可以实现多种材料的共存,从而得到具有复合性的多层或者多元合金薄膜材料。
3、设备易于升级:磁控溅射设备可以通过增加离子束源、改变溅射源材料、改变惰性气体、控制磁场等手段来控制沉积过程的影响参数,实现设备的升级和优化。
三、磁控溅射薄膜镀层的表征方法对磁控溅射薄膜材料的表征主要是基于以下性能指标进行的:1、厚度:利用显微镜、探针仪等手段测量薄膜材料的厚度。
2、结构:采用X射线衍射、扫描电镜等方法对薄膜材料的结构进行重点的分析。
3、物理性能:主要包括镀层抗磨性、耐腐蚀性、硬度等性能,可以通过微纳硬度测试仪、摩擦磨损试验等方法进行。
4、光学性能:包括反射率、透过率、折射率等指标,可以利用特定实验装置进行测量。
四、磁控溅射薄膜在应用领域的前景磁控溅射薄膜技术在实际应用中,可以制备出耐磨、耐腐蚀、隔热等材料,应用广泛,主要可以应用于电子、光电、医药、汽车、航空等领域,并有着广阔的发展前景。
《磁控溅射CrAlSiN膜层制备及综合性能研究》一、引言随着现代工业技术的不断发展,材料表面性能的改进和优化成为了众多领域研究的热点。
磁控溅射技术作为一种重要的薄膜制备技术,因其可以在较低温度下实现薄膜的高速率沉积、优异的成分控制和结构性能等特点,在诸多领域如电子、光电子、机械、航空航天等领域都有广泛应用。
本研究将探讨利用磁控溅射技术制备CrAlSiN膜层的方法及其综合性能研究。
二、磁控溅射CrAlSiN膜层制备1. 实验材料与设备实验材料主要包括Cr、Al、Si和N的靶材,基底材料为需要镀膜的基材。
实验设备为磁控溅射镀膜机。
2. 制备工艺(1)基底预处理:对基底进行清洗、抛光等处理,以提高基底与膜层的结合力。
(2)靶材制备:将Cr、Al、Si按照一定比例混合,制成靶材。
(3)磁控溅射:在真空环境下,利用高能粒子轰击靶材,使靶材中的原子或分子溅射出来并沉积在基底上,形成CrAlSiN膜层。
(4)后处理:对制备好的膜层进行热处理等后处理工艺,以提高其性能。
三、CrAlSiN膜层的综合性能研究1. 结构性能分析利用X射线衍射(XRD)和扫描电子显微镜(SEM)等手段对CrAlSiN膜层的结构进行表征,分析其晶格常数、晶粒大小等结构性能。
2. 化学性能分析通过X射线光电子能谱(XPS)分析CrAlSiN膜层的化学成分及化学键合状态,了解其化学稳定性。
3. 力学性能分析利用纳米压痕仪等设备对CrAlSiN膜层的硬度、弹性模量等力学性能进行测试,分析其耐磨、耐刮等性能。
4. 耐腐蚀性能分析通过浸泡实验和电化学测试等方法对CrAlSiN膜层的耐腐蚀性能进行研究,了解其在不同环境下的耐腐蚀性能。
四、结果与讨论1. 结构性能结果及讨论XRD和SEM结果表明,通过磁控溅射技术制备的CrAlSiN 膜层具有较高的结晶度和致密度,晶粒分布均匀。
同时,随着溅射时间和功率的改变,膜层的厚度和结构也会发生变化。
2. 化学性能结果及讨论XPS分析表明,CrAlSiN膜层具有较高的化学稳定性,能够在不同环境下保持其化学成分和化学键合状态的稳定。
磁控溅射技术在薄膜材料制备中的应用薄膜材料制备技术在现代制造业中具有广泛的应用。
它可以用于生产电子器件、光学器件、功能材料等,具有体积小、重量轻、性能高、成本低等优势。
在薄膜材料制备中,磁控溅射技术被广泛应用,以制备高质量、高附着力、均一性好的薄膜材料。
磁控溅射技术简介磁控溅射技术是一种将固体材料制成薄膜的方法。
它的工作原理是通过电极将气体注入到真空腔中,然后在磁场的作用下将材料加热到极高温度,并将其溅射到沉积基底上形成薄膜。
磁控溅射技术的主要装置包括真空室、电极、磁铁和沉积基底。
真空室是磁控溅射过程中最重要的部分,它是一个密闭的容器,可以将外部大气压力降低到非常低的水平。
电极用来提供粒子的电荷,以及向真空室中注入气体。
磁铁则用来控制离子的运动方向,使其沉积到沉积基底上形成薄膜。
磁控溅射技术的优缺点磁控溅射技术具有许多优点。
首先,它可以制备高质量、高附着力、均一性好的薄膜材料。
其次,制备过程中不会产生聚合物或高分子物,因此对环境没有污染。
再次,磁控溅射技术可以用于制备各种材料,包括金属、非金属及其合金。
最后,它可以控制薄膜厚度,制备厚度从纳米到微米级别的薄膜。
然而,磁控溅射技术也有一些缺点。
首先,它的制备效率比较低,因为其制备速度较慢。
其次,制备过程中需要高压气体,因此成本相对较高。
再次,磁控溅射过程中需要严格控制真空度,因此具有较高的技术门槛。
磁控溅射技术在薄膜材料制备中被广泛应用。
其中最重要的应用就是生产光学膜和电子器件。
在光学膜的制备过程中,磁控溅射技术被用来生产非常均匀、透明度好的多层光学膜。
这些薄膜可以用来制造太阳能电池板、平面显示器、灯具等产品,具有较好的光学性能。
在电子器件制备过程中,磁控溅射技术被用来生产透明电极、导电膜等材料。
这些薄膜在晶体管、场效应管、LED等器件中得到了广泛应用,提高了器件的性能。
此外,磁控溅射技术还可以生产用于陶瓷、橡胶、塑料等领域的高性能薄膜。
这些膜具有附着力好、耐磨性强、抗腐蚀性能好等特点,可以用于提高产品的性能和寿命。
《磁控溅射法制备透明导电氧化物薄膜及其性能研究》一、引言透明导电氧化物(TCO)薄膜作为一种具有优异光学性能和电学性能的材料,广泛应用于光电显示、太阳能电池等领域。
随着科技的发展,对TCO薄膜的性能要求日益提高,制备工艺的优化和性能研究显得尤为重要。
磁控溅射法作为一种常用的制备TCO薄膜的方法,具有制备工艺简单、薄膜质量高等优点。
本文将详细介绍磁控溅射法制备透明导电氧化物薄膜的工艺流程、实验方法及薄膜性能的研究。
二、磁控溅射法制备透明导电氧化物薄膜1. 实验材料与设备实验材料主要包括靶材(如氧化锡(SnO2)或氧化铟(In2O3)等)、基底(如玻璃或石英等)、溅射气体(如氩气等)。
实验设备主要包括磁控溅射镀膜机、真空泵等。
2. 实验方法(1)基底处理:将基底清洗干净,并进行预处理,以提高薄膜与基底的附着力。
(2)靶材制备:将靶材固定在磁控溅射镀膜机的靶位上。
(3)真空环境:将镀膜机腔体抽至高真空状态,以去除腔体内的杂质和气体。
(4)溅射镀膜:在磁控溅射镀膜机中,通过调节溅射功率、气体流量、基底温度等参数,实现TCO薄膜的制备。
三、薄膜性能研究1. 光学性能通过紫外-可见光谱仪测试TCO薄膜的透光率,分析薄膜的光学带隙、光学常数等性能。
同时,还可以通过SEM(扫描电子显微镜)观察薄膜的表面形貌,分析薄膜的光散射性能。
2. 电学性能采用四探针法或霍尔效应测试仪等设备测试TCO薄膜的电阻率、载流子浓度和迁移率等电学性能参数。
通过分析这些参数,可以评估TCO薄膜的导电性能和稳定性。
四、结果与讨论1. 实验结果通过磁控溅射法制备的TCO薄膜具有较高的透光率和较低的电阻率,满足光电显示、太阳能电池等领域的应用需求。
此外,薄膜的表面形貌良好,光散射性能较低。
在实验过程中,通过调整溅射功率、气体流量、基底温度等参数,可以实现对TCO薄膜性能的优化。
2. 结果讨论(1)溅射功率对TCO薄膜性能的影响:随着溅射功率的增加,薄膜的结晶性和致密度提高,从而提高了薄膜的透光率和导电性能。
《磁控溅射CrAlSiN膜层制备及综合性能研究》一、引言随着现代工业技术的不断发展,材料表面性能的改进和优化已成为提高产品性能和使用寿命的关键。
磁控溅射技术作为一种先进的薄膜制备技术,在材料科学领域得到了广泛的应用。
本文以CrAlSiN膜层为研究对象,通过磁控溅射技术制备该膜层,并对其综合性能进行深入研究。
二、磁控溅射CrAlSiN膜层制备1. 材料选择与设备准备本实验选用高纯度的Cr、Al、Si和N等靶材作为溅射原料。
设备采用磁控溅射镀膜机,具有高溅射速率、低损伤等特点。
2. 制备工艺流程(1)清洗基底:将基底(如不锈钢、铝合金等)进行清洗,去除表面油污和杂质。
(2)预处理:对清洗后的基底进行预处理,如抛光、蚀刻等,以提高基底与膜层的结合力。
(3)磁控溅射:将靶材放置于镀膜机中,调整好溅射参数(如功率、气压、溅射时间等),进行磁控溅射。
(4)后处理:溅射完成后,对膜层进行适当的后处理,如退火、氧化等,以提高膜层的性能。
三、CrAlSiN膜层综合性能研究1. 结构与形貌分析采用X射线衍射(XRD)和扫描电子显微镜(SEM)等手段,对CrAlSiN膜层的结构和形貌进行分析。
结果表明,CrAlSiN膜层具有致密的晶体结构,表面平整度较高。
2. 机械性能研究通过硬度测试、耐磨性测试等方法,对CrAlSiN膜层的机械性能进行研究。
结果表明,该膜层具有较高的硬度和良好的耐磨性,可有效提高基底的表面硬度和使用寿命。
3. 耐腐蚀性能研究在模拟实际使用环境条件下,对CrAlSiN膜层的耐腐蚀性能进行测试。
结果表明,该膜层具有较好的耐腐蚀性能,可在恶劣环境下保持良好的性能。
4. 热稳定性研究通过高温测试等方法,对CrAlSiN膜层的热稳定性进行研究。
结果表明,该膜层具有较高的热稳定性,可在高温环境下保持稳定的性能。
四、结论本文通过磁控溅射技术成功制备了CrAlSiN膜层,并对其综合性能进行了深入研究。
结果表明,该膜层具有致密的晶体结构、较高的硬度和良好的耐磨性、耐腐蚀性能及热稳定性。
实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。
二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。
三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。
辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。
图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。
随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。
一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。
进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。
当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。
随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。
(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。
氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。
用磁控溅射制备薄膜材料的概述用磁控溅射制备薄膜材料的概述1.引言溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。
它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。
磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。
磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。
2.溅射技术的发展1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。
采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。
这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。
在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现实,磁控溅射更加快速地发展起来。
溅射技术先后经历了二级、三级和高频溅射。
二极溅射是最早采用,并且是目前最简单的基本溅射方法。
二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。
为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。
然而像这种传统的溅射技术都有明显的缺点:1).溅射压强高、污染严重、薄膜纯度差2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低3).灯丝寿命低,也存在灯丝对薄膜的污染问题3.磁控溅射的原理:磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。
磁控溅射法制备薄膜材料综述材料化学张召举摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。
本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。
关键字磁控溅射;原理;工艺条件;影响正文薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广泛应用。
薄膜的制备大致可分为物理方法和化学方法两大类。
物理方法主要包括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积(CVD)、溶胶-凝胶法(sol-gel)等。
溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂量比及膜厚等优点,成为制备薄膜的重要手段。
溅射法根据激发溅射离子和沉积薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两种。
本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。
磁控溅射是70年代迅速发展起来的新型溅射技术,目前已在工业生产中实际应用。
这是由于磁控溅射的镀膜速率与二极溅射相比提高了一个数量级。
具有高速、低温、低损伤等优点。
高速是指沉积速率快;低温和低损伤是指基片的温升低、对膜层的损伤小。
1974年Chapin发明了适用于工业应用的平面磁控溅射靶,对进人生产领域起了推动作用。
磁控溅射基本原理磁控溅射是20世纪70年代迅速发展起来的一种高速溅射技术。
对许多材料,利用磁控溅射的方式溅射速率达到了电子术蒸发的水平,而且在溅射金属时还可避免二次电子轰击而使基板保持冷态,这对使用怕受温度影响的材料作为薄膜沉积的基板具有重要意义。
磁控溅射是在磁场控制下的产生辉光放电,在溅射室内加上与电场垂直的正交磁场,以磁场来改变电子的运动方向,电子的运动被限制在一定空间内,增加了同工作气体分子的碰撞几率,提高了电子的电离效率。
电子经过多次碰撞后,丧失了能量成为“最终电子”进入弱电场区,最后到达阳极时己经是低能电子,不再会使基片过热。
被溅射的原子到达衬底表面之后,经过吸附、凝结、表面扩散迁移、碰撞结合形成稳定晶核,晶粒长大后互相联结聚集,最后形成连续状薄膜。
电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar+和新的电子;新电子飞向基片,Ar+在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar+来轰击靶材,从而实现了高的沉积速率。
随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。
由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。
磁控溅射包括很多种类。
各有不同工作原理和应用对象。
但有一共同点:利用磁场与电子交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。
所产生的离子在电场作用下撞向靶面从而溅射出靶材。
靶源分平衡和非平衡式,平衡式靶源镀膜均匀,非平衡式靶源镀膜膜层和基体结合力强。
平衡靶源多用于半导体光学膜,非平衡多用于磨损装饰膜。
磁控阴极按照磁场位形分布不同,大致可分为平衡态和非平衡磁控阴极。
平衡态磁控阴极内外磁钢的磁通量大致相等,两极磁力线闭合于靶面,很好地将电子/等离子体约束在靶面附近,增加碰撞几率,提高了离化效率,因而在较低的工作气压和电压下就能起辉并维持辉光放电,靶材利用率相对较高,但由于电子沿磁力线运动主要闭合于靶面,基片区域所受离子轰击较小.非平衡磁控溅射技术概念,即让磁控阴极外磁极磁通大于内磁极,两极磁力线在靶面不完全闭合,部分磁力线可沿靶的边缘延伸到基片区域,从而部分电子可以沿着磁力线扩展到基片,增加基片区域的等离子体密度和气体电离率.不管平衡非平衡,若磁铁静止,其磁场特性决定一般靶材利用率小于30%。
为增大靶材利用率,可采用旋转磁场。
但旋转磁场需要旋转机构,同时溅射速率要减小。
旋转磁场多用于大型或贵重靶。
如半导体膜溅射。
对于小型设备和一般工业设备,多用磁场静止靶源。
用磁控靶源溅射金属和合金很容易,点火和溅射很方便。
这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。
但若溅射绝缘体如陶瓷则回路断了。
于是人们采用高频电源,回路中加入很强的电容。
这样在绝缘回路中靶材成了一个电容。
但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。
为解决此问题,发明了磁控反应溅射。
就是用金属靶,加入氩气和反应气体如氮气或氧气。
当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。
磁控反应溅射绝缘体看似容易,而实际操作困难。
主要问题是反应不光发生在零件表面,也发生在阳极,真空腔体表面,以及靶源表面。
从而引起灭火,靶源和工件表面起弧等。
德国莱宝发明的孪生靶源技术,很好的解决了这个问题。
其原理是一对靶源互相为阴阳极,从而消除阳极表面氧化或氮化。
冷却是一切源(磁控,多弧,离子)所必需,因为能量很大一部分转为热量,若无冷却或冷却不足,这种热量将使靶源温度达一千度以上从而溶化整个靶源。
磁控溅射的特点磁控溅射法理论上可溅射任何物质镀制相应的薄膜,可以方便地制备各种单质和复合纳米薄膜材料,包括无机和有机材料的复合薄膜,因此是适用性较广的物理沉积纳米复合薄膜的方法。
该方法在磁场的控制下工作,有着显著的优点:1)由于电磁场的作用,电子与放电气体的碰撞几率增高,气体的离化率从而增大,使低气压溅射成为可能。
而且在电磁场的作用下,二次电子在靶表面作旋轮运动,只有能量耗尽后才脱离靶表面,使得基片损伤小、温度升高幅度低。
2)高密度的等离子体被电磁场束缚在靶面附近,不仅提高了电离效率,使工作气压大大降低,而且有利于正离子有效的轰击靶面,使沉积速率有效提高。
3)由于工作气压低,所以减少了工作气体对被溅射出的粒子的散射作用,有利于沉积速率的提高,并可增加膜层与基片的附着力。
影响薄膜性能的因素薄膜材料的组成、性能、工艺条件等参量的变化都对薄膜的特性有显著影响,因此可以在较大的自由度上进行人为地控制纳米薄膜的特性的形成,获得满足需要的材料。
为了使制备的薄膜付诸应用,必须精确控制薄膜的物理和化学性质。
使用磁控溅射制备薄膜的过程中,等离子体中的荷能粒子的运动直接影响薄膜的生长,而荷能粒子受溅射参数所控制。
1 基片及靶材种类对薄膜性能的影响基片是薄膜生长的载体,选取适合的基片是制备薄膜的必要条件[4]。
基片的选取需考虑的因素有:1)基片直接影响生长薄膜的类型,若制备单晶则须选取单晶基片。
2)基片也影响薄膜在基片上的附着力,所以所制备的薄膜材料的晶格常数需与基片的晶格常数有较小的错配度。
而且在制备薄膜前须对基片进行必要的清洗。
靶材选取的根本原则是便于制备出化学剂量比一定的薄膜。
在磁控溅射中,靶的选取考虑的因素有:1)靶的选取影响溅射模式。
例如靶为非金属,须用射频溅射模式;若为金属靶,则可用直流溅射模式。
2)靶的选取影响晶向,在制备ZnO薄膜时,采用ZnO靶比Zn靶更适合生长c-轴取向的薄膜,Zn靶掺入适量Al也能影响薄膜的生长取向。
2基片温度基片温度主要影响薄膜的晶相,适合的基片温度是生长单晶的必备条件。
基片温度的高低主要产生的影响:1)基片温度直接影响沉积薄膜的晶相及晶体结构[5]。
若基片温度低于所制备物质的结晶温度,可沉积出非晶薄膜,通过后期热处理可将非晶薄膜转化为多晶或单晶薄膜;若大于结品温度,则可沉积多晶薄膜;若大于外延温度,则在适当的基片上可直接生长出单晶薄膜。
2)基片温度的高低会导致薄膜晶粒大小发生变化,从而影响其表面形貌。
一般来说,高温沉积的薄膜易形成粗大的岛状组织,而在低温时,形成核的数目增加,这将有利于形成晶粒小而连续的薄膜组织,而且还增强了薄膜的附着力[1]。
3)在反应溅射系统中,基片温度的高低也影响活性气体的作用程度。
3溅射功率溅射功率变化对薄膜材料性能产生的影响是:1)影响溅射产额,从而影响沉积速率。
利用小角X射线衍射测量膜厚原理得到在溅射气压、靶材与基片相对位置等其他条件保持不变的情况下,沉积速率与溅射功率之间在测量范围内成线性关系。
2)使溅射产物的团簇大小发生变化。
当功率较小时溅射粒子动能较小,发生表面扩散迁移和再结晶的可能性较小,薄膜颗粒尺寸较小。
随着溅射功率的增加溅射速率也随之增大,即在溅射时间相同的条件下,高功率下溅射出的粒子数目更多,粒子间直接碰撞成核的几率增大。
3)对薄膜材料导电性能的影响。
如在制备Al掺杂ZnO薄膜时电阻率随溅射功率的增加而降低,溅射功率较小时,制备的薄膜颗粒较小,会形成较多的晶粒间界,膜的完整性较差,随溅射功率的增加薄膜材料的致密化程度提高,因此电阻率下降。
4)溅射功率还会影响所制备膜的力学性能。
例如在中频磁控溅射制备类金刚石薄膜时,随着靶功率的增加,薄膜硬度和弹性模量先增加后减小,其原因是随着功率增加,离子能量增加,使得薄膜内应力增加,导致薄膜内Sp3键含量增加,从而使其硬度和弹性模量增加;但是,随着离子能量进一步增大,薄膜的石墨化转变导致硬度和弹性模量下降。
4溅射气压在溅射过程中,溅射气压大小影响着到达基片表面的粒子数以及粒子的能量[10]。
如果真空室内气体压强比较高,就会造成溅射腔内的气体粒子和激发出来的离子数目比较多,同时也会增加溅射出来的粒子在到达基片的过程中同溅射腔内的气体和粒子的碰撞几率。
从而影响到薄膜材料的沉积速率和溅射产物到达基片时的能量,进而导致所生成的薄膜表面形貌、光学特性、生长模式等发生变化。
例如在制备ZnO薄膜[11]时,在1.9Pa的低气压下,ZnO薄膜表面晶粒较小,晶粒呈团簇状,各晶粒有合并的趋势,但晶粒之间的晶界仍明显存在;2. 2 Pa气压下的团簇内部没有显示晶界,说明已经形成较大晶粒,但边缘呈不规则状;2. 6 Pa气压下晶粒明显增大,且边缘平直化;3. 2 Pa气压下薄膜表面颗粒大小均匀,紧致,且平整;3. 5 Pa气压下的样品颗粒变小,大小均匀紧致。
在制备TiN膜[12]时随着腔体气压的增大其光学性能呈现下降趋势,且沉积速率减小,膜厚减小。
5 溅射时间磁控溅射法制备薄膜时溅射时间对薄膜的物相结构和膜的表面形貌等会产生一定的影响。
例如在制备Sb薄膜负极材料时,随着溅射时间的增加其结晶的完整性先变好后变差,这可能是镀膜时间增加后,从靶材上溅射出来的粒子到达基片时,破坏了原来已成核长大的晶体,使得结晶完整性变差。