2PSK和2DPSK调制解调仿真系统设计
- 格式:doc
- 大小:1.58 MB
- 文档页数:50
2PSK与2DPSK调制与解调原理一、概述1. 背景介绍近年来,通信技术的发展日新月异,无线通信在各行各业中的应用越来越广泛。
而在无线通信中,调制与解调技术是至关重要的一环,其负责将信息信号转换为适合在信道上传输的模拟信号,从而实现信息的传输和接收。
2. 研究意义本文旨在深入探讨2PSK(2 Phase Shift Keying)与2DPSK(2 Differential Phase Shift Keying)调制与解调原理,为相关领域的研究人员提供参考并促进通信技术的发展。
3. 研究目的通过对2PSK与2DPSK调制与解调原理的深入研究,进一步理解其工作原理和应用特点,为相关领域的技术人员提供参考,促进相关领域的发展。
二、2PSK调制与解调原理1. 调制原理2PSK调制即二进制相移键控技术,其原理是通过改变载波的相位来传输数字信号。
具体来说,当输入为“0”时,相位不变;当输入为“1”时,相位发生180度的反转。
这样,就可以将数字信号转换为模拟信号,方便在信道上传输。
2. 解调原理对于2PSK信号的解调,通常采用相干解调的方式。
即接收端使用与发送端相同频率和相位的本地振荡器来恢复原始的数字信号。
通过相位差的计算,将接收到的信号转换为相应的数字信号。
3. 工作示意图(插入适当的2PSK调制与解调示意图)三、2DPSK调制与解调原理1. 调制原理2DPSK调制是二进制差分相移键控技术,与2PSK类似,但其差别在于传输的是相邻符号间的相位差,而不是绝对相位值。
这种设计使得2DPSK在频率偏移和相位偏移的情况下具有更好的抗干扰能力。
2. 解调原理2DPSK信号的解调通常采用差分相干解调的方式。
在接收端,利用两个连续的信号间的相位差,便可以还原出原始的数字信号。
3. 工作示意图(插入适当的2DPSK调制与解调示意图)四、2PSK与2DPSK在通信领域的应用1. 2PSK的应用2PSK广泛应用于数字通信系统中,如调制解调器、数字广播、数据传输等领域。
2PSK调制解调技术的设计与仿真2PSK(二进制相移键控)调制解调技术是一种基本的数字调制解调技术,常用于数字通信系统中。
本文将对2PSK调制解调技术的设计与仿真进行详细介绍。
首先,我们来了解一下2PSK调制解调技术的基本原理。
2PSK调制是通过改变载波的初始相位来传输数字信息。
其中,数字“0”表示载波相位为0度(或180度),数字“1”表示载波相位为90度(或-90度)。
在接收端,通过检测载波的相位来解调出数字信息。
接下来,我们开始进行2PSK调制的设计与仿真。
我们首先需要确定调制的参数,包括载波频率、数据传输速率和调制指数等。
以载波频率为f_c,数据传输速率为R_b,调制指数为m,调制信号可以表示为s(t) =A_c * cos(2πf_c*t + m*d(t)),其中d(t)为数字信息序列。
在MATLAB/Simulink中进行仿真时,我们需要设计一个基带信号发送器来生成调制信号。
基带信号生成的过程需要经历产生数字信息序列、映射为相应的载波相位以及平滑滤波等步骤。
首先,我们生成数字信息序列。
可以通过随机生成0和1的序列来模拟实际的数字信息。
生成的数字信息序列将成为基带信号的输入。
其次,我们需要将数字信息序列映射为相应的载波相位。
对于2PSK调制,可以将数字“0”映射为0度相位,将数字“1”映射为90度相位。
然后,我们进行平滑滤波处理。
平滑滤波可以去除调制信号的高频成分,使调制信号更加平滑。
常用的平滑滤波器包括低通滤波器和匹配滤波器。
在2PSK调制中,可以选择匹配滤波器,其频率特性与信号的眼图匹配,可以最大程度地提高信号的抗干扰性。
最后,我们将生成的调制信号送入信道进行传输。
在仿真中,可以通过添加高斯噪声来模拟实际的传输环境。
在接收端,我们需要设计一个相位解调器来解调接收到的信号。
相位解调器可以通过检测载波的相位来恢复出数字信息序列。
常用的相位解调方法包括包络检测法、移相检测法和差分解调法等。
2PSK调制与解调系统的仿真设计首先,我们需要了解2PSK调制与解调系统的基本原理。
2PSK(二进制相移键控)调制技术是一种利用相位来表示数字信息的调制技术。
在2PSK调制中,0和1分别用相位0°和180°表示。
调制器将数字信息转化为相位的变化,然后通过信道传输到接收端。
解调器在接收端将相位变化还原为数字信息。
2PSK调制与解调系统可以简单地分为两个部分:调制器和解调器。
在调制器中,我们可以使用相位锁定环(PLL)的方法实现2PSK调制。
PLL能够锁定输入信号的相位,然后产生相应的调制信号。
在2PSK调制中,我们可以使用正弦波信号作为基频信号,通过改变其初始相位来实现信号的相位调制。
在解调器中,我们可以使用相关器(correlator)的方法实现2PSK解调。
相关器能够检测接收信号与已知的参考信号之间的相关性,从而获取相位变化信息。
在2PSK解调中,我们可以使用相位为0°和180°的两个参考信号与接收信号进行相关运算,然后根据相关结果来判断接收信号的相位。
为了验证2PSK调制与解调系统的性能,我们可以进行仿真设计。
首先,我们需要确定系统所需的参数,包括载波频率、数据速率、信噪比等。
然后,我们使用Matlab或者其他仿真软件搭建2PSK调制与解调系统的模型,包括调制器和解调器。
在调制器模型中,我们生成数字信号,并将其转化为相位变化信号。
根据系统参数,我们生成相应频率的正弦波,并通过改变初始相位来实现调制。
然后,我们将调制信号通过信道传输到解调器。
在解调器模型中,我们接收到调制信号,并使用相关器来检测信号的相位变化。
根据相关结果,我们可以判断信号的相位,并将其转化为数字信息。
然后,我们可以将解调后的数字信息与原始数据进行比较,评估系统的性能。
进行仿真实验时,我们可以改变系统参数来研究其对系统性能的影响。
比如,我们可以改变信噪比,观察误码率的变化。
或者,我们可以改变数据速率,观察解调器的解调效果。
西安科技大学移动通信课程设计报告2PSK和2DPSK调制解调仿真系统设计专业:通信工程班级:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:姓名:学号:成绩:设计时间:审阅教师:西安科技大学通信通信学院目录1.前言 (2)1.1 设计提示 (2)1.2 设计要求 (2)1.3 时间安排 (2)1.4 基本原理与论证 (2)2.2PSK调制解调原理及系统设计 (4)2.1 2PSK基本原理 (4)2.2 2PSK调制原理 (4)2.3 2PSK调制系统设计 (5)2.4 2PSK解调原理 (14)2.5 2PSK解调系统设计 (15)2.6 2PSK系统设计 (17)3.2DPSK调制解调原理及系统设计 (23)3.1 2DPSK的基本原理 (23)3.2 2DPSK调制原理 (23)3.3 2DPSK调制系统设计 (25)3.4 2DPSK解调原理 (31)3.5 2DPSK解调系统设计 (34)3.6 2DPSK系统设计 (39)4. 总结 (42)4.1 各个组员总结 (42)4.2 组长评价 (44)参考文献 (45)1.前言1.1设计提示1.根据2PSK和2DPSK信号的产生与解调方法,利用Matlab/Simulink软件进行系统设计。
2.利用Simulink专业库Communications Blockset中的Modulation模块库所提供的实现数字信号调制解调的模块,完成系统设计,并输出误码率,信道中的噪声为高斯白噪声。
1.2设计要求1.输出已调制信号的波形图及其频谱图;2.将输入的基带信号波形和解调后的数字基带信号波形进行比较;3.由三人按提示一完成系统设计,由两人按提示二完成系统设计;4.设计报告中必须有详细的设计过程,即模块选取、参数设置、图形输出等,由组长签字,评价所有成员在设计组中的作用和表现等。
5.书写及设计方案均用A4纸打印以便统一装订成册,上交电子文本。
摘要:Simulink是Mathworks公司推出的基于Matlab平台的著名仿真环境Simulin作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。
本次课程设计是基于M A T LA B 的2P S K和2D P S K仿真,通过系统分析,步骤来完成本次设计任务。
通过课程设计从理论学习的轨道逐步引向实际应用,把理论上熟悉的定性分析、定量计算逐步和工程估算、实验调整等手段结合起来,掌握工程设计的步骤和方法,了解科学实验的程序和实施方法,为以后毕业设计和从事信息处理技术的实际工作打下基础。
关键词:MATLAB;2PSK,2DPSK;仿真目录第1章 MATLAB简介 (1)第2章二进制相移键控 (1)2.1PSK调制原理 (2)2.2PSK解调原理 (3)2.3仿真结果及分析 (4)第3章二进制差分相移键控 (6)3.1DPSK调制原理 (6)3.2DPSK解调原理 (6)3.3仿真结果及分析 (8)第3章总结 (10)附录 (11)参考文献 (20)致谢...................................................... 错误!未定义书签。
第1章 Matlab简介美国Mathworks公司于1967年推出了矩阵实验室“Matrix Laboratory”(缩写为Matlab)这就是Matlab最早的雏形。
开发的最早的目的是帮助学校的老师和学生更好的授课和学习。
Matlab是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。
Simulink是MATLAB中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。
确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。
通信原理matlab课程设计--2ASK、2FSK、2PSK、2DPSK调制解调matlab仿真南昌大学通信原理课程设计报告题目: 2ASK、2FSK、2PSK、2DPSK调制解调matlab仿真姓名:学院:信工学院专业:指导教师:完成日期:2013 年5 月5日一、设计要求课程设计需要运用MATLAB 编程实现2ASK,2FSK,2PSK ,2DPSK 调制解调过程,并且输出其源码,调制后码元以及解调后码元的波形。
二、基本原理二进制数字调制技术原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
通常使用键控法来实现数字调制,比如对载波的振幅、频率和相位进行键控。
(1)振幅键控是利用载波的幅度变化来传递数字信息,而其频率和相位保持不变,在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息‘0’和‘1’。
OOK (通-断键控)是一种常用的二进制振幅键控式模拟调制器法 键控法包络检波法)开关电路2e2e同步检测法(2) 一个2FSK 信号可以看成是两个不同载波的2ASK 信号的叠加。
其解调和解调方法和ASK 差不多。
2FSK 信号的频谱可以看成是f1和f2的两个2ASK 频谱的组合。
2FSK 信号的产生方法采用模拟调频电路来实现:信号在相邻码元之间的相位是连续变化的。
采用键控法来实现:相邻码元之间的相位不一定连续。
2FSK 信号的解调方法相干解调2e FSK2e FSK非相干解调(3) 2PSK 以载波的相位变化作为参考基准的,当基带信号为0时相位相对于初始相位为0, 当基带信号为1时相对于初始相位为180°。
调制器原理方框图如下:检控法2PSK 信号的解调器原理方框图(4) 2DPSK 是利用前后相邻码元的载波相对相位变化传递数字信息,所以又称相对相移键控。
2DPSK系统设计和仿真2DPSK(2-Differential Phase Shift Keying)是一种数字调制技术,通过在相邻的两个符号间比较相位差来传输数字信息。
在2DPSK系统中,每个符号都对应着2个相位状态,即+180°和-180°,通过在相邻符号间相位差的改变来表示二进制数据。
1.2DPSK调制器设计:2DPSK调制器是将数字数据转换为相位信号的关键组件。
常用的方法是采用相移键控(PSK)调制器。
相移键控调制器通过改变每个符号间的相位差来进行调制。
在2DPSK系统中,相位差的变化为180°,即+180°和-180°。
2.2DPSK解调器设计:3.信道设计:在2DPSK系统设计中,信道是一个重要的考虑因素。
信道可以引入噪声和失真,对系统性能产生影响。
设计合适的信道模型,可以更好地评估系统的性能。
4.误码率性能评估:误码率(BER)是衡量2DPSK系统性能的重要指标。
通过使用理论模型或进行仿真,可以评估不同调制参数和信道条件下系统的BER性能。
5.系统参数优化:对于设计的2DPSK系统,可以通过仿真来优化系统参数。
这包括调制索引、信道带宽、功率衰减等。
通过调整这些参数,系统的性能可以得到改善。
在进行2DPSK系统的仿真时,可以使用MATLAB等工具来实现。
利用MATLAB中提供的相关函数,可以方便地进行信号的生成、调制、解调和误码率性能评估等。
通过设置合适的参数,模拟实际场景下的信号传输过程,进而优化系统设计。
总结起来,2DPSK系统设计和仿真的关键步骤包括调制器和解调器的设计、信道建模、误码率性能评估以及系统参数优化。
通过合理的设计和仿真,可以有效地评估系统的性能,并进行参数调整以满足要求。
2PSK与2DPSK系统性能分析1.课程设计目的1. 掌握2PSK、2DPSK的调制与解调原理;2. 掌握仿真软件matlab的使用方法;3. 完成对2PSK、2DPSK的调制与解调仿真电路设计,并对仿真结果进行分析。
2.课程设计要求1.了解2PSK系统包括几部分,及每部分的功能特性。
2.了解2DPSK系统包括几部分,及每部分的功能特性。
3.就其调制部分,利用分立元件搭建电路。
4.掌握理论联系实践的方法。
3.相关知识3.1 matlab软件的应用MATLAB是矩阵实验室(Matrix Laboratory)之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.MATLAB软件具有以下特点:1)语言简洁紧凑,使用方便灵活,库函数极其丰富;2) 运算符丰富;3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。
4)程序限制不严格,程序设计自由度大。
例如,在MATLAB里,用户无需对矩阵预定义就可使用。
5)程序的可移植性很好,基本上不做修改就可以在各种型号的计算机和操作系统上运行。
6)MATLAB的图形功能强大。
在FORTRAN和C语言里,绘图都很不容易,但在MATLAB 里,数据的可视化非常简单。
MATLAB还具有较强的编辑图形界面的能力。
7)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB 的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
8)功能强大的工具箱是MATLAB的另一特色。
MATLAB包含两个部分:核心部分和各种可选的工具箱。
核心部分中有数百个核心内部函数。
2PSK及2DPSK信号调制解调实验一、实验目的1. 掌握利用systemview进行仿真的方法;2. 掌握2PSK调制解调的基本原理;3. 掌握2DPSK调制解调的基本原理。
二、实验仪器电脑,systemview5.0软件三、实验原理1. 调制原理2PSK方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。
两个载波相位通常相差180度,此时成为反向键控(PSK),也称为绝对相移方式。
绝对相移方式存在一个缺点。
我们看到,如果采用绝对相移方式,由于发送端是以某一个相位作基准的,因而在接收端也必须有这样一个固定基准相位作参考。
如果这个参考相位发送变化(0相位变π相位或π相位变0相位),则恢复得数字信息就会发送0变为1或1变为0,从而造成错误的恢复。
考虑到实际通信时参考基准相位的随机跳变(温度漂移或噪声引起)是可能的,而且在通信过程中不易被发觉。
比如,由于某种突然的干扰,系统中的分频器可能发生状态的转移、锁相环路的稳定状态也可能发生转移。
这时,采用2PSK方式就会在接收端得到完全相反的恢复。
这种现象,常称为2PSK方式的“倒π”现象。
为此,实际中一般不采用2PSK方式,而采用一种所谓的相对(差分)移相(2DPSK)方式。
2DPSK方式是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。
即用前后两个码元之间的相差来表示码元的值“0”和“1”。
例如,假设相差值“π”表示符号“1”,相差值“0”表示符号“0”。
因此,解调2DPSK信号时并不依赖于某一固定的载波相位参考值,只要前后码元的相对相位关系不破坏,则只要鉴别这个相差关系就可正确恢复数字信息,这就避免了2PSK中的倒π现象发生。
2. 解调原理2PSK信号是恒包络信号,因此2PSK信号的解调必须采用相干解调。
但如何得到同频同相的载波是个关键问题。
2DPSK调制解调系统的设计和仿真第一部分:调制器设计调制器是将输入比特流转换为相位差,从而进行调制的部分。
2DPSK 调制器的设计可以采用查表法。
首先,将输入比特流分为两个并行流,分别表示实部和虚部。
然后,通过比较当前比特和上一个比特的差异,确定下一个相位的差别。
假设当前比特为0,上一个比特为1,则相位差为π/2;假设当前比特为1,上一个比特为1,则相位差为0。
最后,根据相位差确定相位(0、π/2、π、3π/2)。
设计调制器时,可以使用Matlab或Simulink等工具进行仿真。
根据输入比特流,通过调制器可以得到相应的相位差输出。
第二部分:信道建模信道建模是模拟实际传输环境中的信道特性。
在信道建模过程中,需要考虑到信道带宽、噪声等因素。
可以采用高斯信道模型或瑞利信道模型进行仿真。
其中,高斯信道模型适用于室内或受干扰较少的环境,瑞利信道模型适用于室外或有多径衰落的环境。
第三部分:解调器设计解调器是将接收到的信号恢复为原始比特流的部分。
2DPSK解调器的设计可以采用软判决法。
首先,检测接收到的相位与已知相位差之间的关系。
根据相位差的不同,确定当前接收到的比特是0还是1、然后,根据比特的变化进行恢复,即将当前比特与上一个比特进行异或运算,得到输出比特流。
设计解调器时,可以使用Matlab或Simulink等工具进行仿真。
根据接收到的相位差,通过解调器可以得到恢复后的比特流输出。
总结:通过以上三个步骤,可以设计并仿真一个完整的2DPSK调制解调系统。
首先,设计调制器将输入比特流转换为相位差;然后,建立信道模型进行仿真;最后,设计解调器将接收到的信号恢复为原始比特流。
通过仿真,可以评估系统的性能指标,如误比特率(BER)等,并进行调试和优化。
2PSK和2DPSK调制解调仿真系统设计在设计2PSK和2DPSK调制解调仿真系统之前,我们首先需要了解什么是PSK和DPSK调制方式。
PSK(Phase Shift Keying)是一种利用相位来表达数字信息的调制方式。
在2PSK调制中,发送的数字信息被编码为两个相位状态,一般是0度和180度。
接收端通过检测相位的变化来解调数字信息。
DPSK(Differential Phase Shift Keying)也是一种相位调制方式,但与PSK不同的是,DPSK调制是基于相邻比特之间的相对相位差。
在2DPSK调制中,一个比特对应两个相位状态之一,但这两个相位状态的确定是基于前一个比特的相对相位差。
接收端同样通过检测相位差的变化来解调数字信息。
接下来,我们将详细介绍设计2PSK和2DPSK调制解调仿真系统的步骤。
1.确定系统的基本参数和需求:-选择合适的载波频率和带宽-确定符号周期和比特周期-确定基带信号的采样率和采样时间-确定传输信道的信噪比和衰落模型2.生成发送端的数字信息序列:-设计一个随机或固定的比特序列作为发送端的数字信息-确定比特序列的长度和采样率-将比特序列映射为相应的相位状态,得到发送信号3.进行2PSK调制:-根据2PSK调制的原理和公式,将发送信号转换为相位调制信号-可以使用复数来表示相位调制信号,实部和虚部分别对应相位为0度和180度-进行幅度归一化处理,使信号的平均功率为14.模拟信道传输:-在发送信号上加入高斯白噪声,模拟信道的干扰和噪声-考虑信道的衰落效应,可以使用加性高斯白噪声信道或其他信道模型5.进行2PSK解调:-接收端接收到经过信道传输的调制信号-经过采样和判决处理,将接收信号恢复为数字信息-利用解调的相位差来确定数字信息的比特值6.生成2DPSK发送信号:-根据2DPSK调制的原理和公式,将发送信号转换为相位调制信号-相对于2PSK调制,2DPSK调制相邻比特之间的相对相位差决定了相位状态的切换7.进行2DPSK调制和传输:-类似于2PSK调制和信道传输的步骤,将2DPSK发送信号调制和传输到接收端8.进行2DPSK解调:-接收端接收到经过信道传输的2DPSK调制信号-经过采样和判决处理,将接收信号恢复为数字信息9.分析和评估系统性能:- 计算误码率(Bit Error Rate, BER)和符号误码率(Symbol Error Rate, SER)等性能指标-绘制BER和SER随信噪比的变化曲线,评估系统的可靠性和性能10.优化和改进系统设计:-根据系统性能评估的结果,对系统参数进行调整和优化-可以尝试使用不同的调制方式、码型或编码技术来改进系统性能设计2PSK和2DPSK调制解调仿真系统需要考虑到数字信号的生成和调制、信道传输和解调等各个环节,同时还需要注意选择适当的参数和模型来实现系统的设计和仿真。
2PSK与2DPSK调制解调系统的仿真设计与分析曾光;任峻【摘要】本文介绍了2PSK与2DPSK调制解调的基本原理,采用Systemview软件构建2PSK与2DPSK调制解调仿真系统,通过Systemview分析窗口分析接收方载波反相和不反相时信号在这两个仿真系统中的波形变化,直观地显示了2PSK 信号的“反相工作”现象和2DPSK信号消除"反相工作"的原因:2DPSK解调输出为2PSK解调输出的差分译码,当接收方载波反相时,2PSK解调输出电平与正常解调输出完全相反("反相工作"现象),但它们电平改变的位置相同,因此通过差分译码后得到的2DPSK的解调输出与正常解调输出相同。
%The paper introduces the basic principles of modulation and demodulation for 2PSK and 2DPSK and builds their simulation system on SystemView. By using the analysis window of SystemView, we can analyze waveform changes in the two simulation systems when carrier wave is in phase and out of phase, which intuitively show the reason of"reverse phase work"in 2PSK system and the reason that 2DPSK system can remove"reverse phase work":The2DPSK demodulator output is the differential decoding of the 2PSK demodulator output. The 2PSK demodulation output when the receiver carrier out of phase is completely contrary to that when the receiver carrier is in phase (this is"reverse phase work"in 2PSK), and their electrical level changes are in the same position. Therefore, after differential decoding of 2PSK demodulator output, 2DPSK demodulation output when the receiver carrier out of phase is as same as that when the receiver carrier is in phase.【期刊名称】《电子设计工程》【年(卷),期】2016(024)011【总页数】4页(P78-80,83)【关键词】SystemView仿真;2PSK和 2DPSK调制解调;反相工作;子系统【作者】曾光;任峻【作者单位】湖南农业大学信息科学技术学院,湖南长沙 410128;湖南农业大学信息科学技术学院,湖南长沙 410128【正文语种】中文【中图分类】TP302数字调制系统是通信系统中常见的一种,也是很多数字系统的基础。
2PSK与2DPSK系统的性能分析实验目的:1.掌握2PSK与2DPSK的调制与解调原理2.对2PSK与2DPSK的系统的性能分析三、2PSK、2DPSK调制解调原理1.2PSK调制与解调2PSK信号的产生方法主要有两种,即相乘法和开关法。
方框图如下图1(a),(b)所示:a.(相乘法)b.(选择法)2PSK信号的解调方法是相干解调。
由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。
下图为2PSK系统原理方框图。
2PSK相干解调系统的各测试点的波形2.2DPSK调制与解调2DPSK调制原理方框图如下图2DPSK相干解调系统的各测试点波形四、2PSK、2DPSK调制解调仿真电路1.仿真参数设置1)信号源参数设置:基带信号码元速率设为101==T R B 波特,在观察每个码元波形时载频设为Hz f s 10=;在观察2PSK 、2DPSK 信号功率谱密度时,载频设为Hz f s 30=。
(说明:载频s f 设得较低,目的主要是为了降低仿真时系统的抽样率,加快仿真时间。
)2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。
本次仿真取10s f ,即200Hz3)系统时间设置:通常设系统Start time=0。
为能够清晰观察每个码元波形及2PSK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2PSK 信号的功率谱密度。
2.2PSK 、2DPSK 调制与解调的仿真电路2PSK 的调制与仿真电路2DPSK的调制与解调仿真电路:仿真仿真分析:2PSK与2DPSK系统的性能分析:1.二进制差分相移键控(2DPSK)二进制差分相移键控常简称为二相相对调相,记作2DPSK。
电子信息与电气工程系课程设计报告设计类型:设计题目:2PSK数字传输系统的设计系别:电子系年级专业:08级通信工程学号:学生姓名:指导教师:目录1 摘要: (4)2 2PSK工作原理 (4)2.1 2PSK数字调制 (4)2.2 调制原理 (5)2.3 解调原理 (6)3 方案选择 (6)3.1 信号调制结构图 (6)3.2 信号解调结构图 (7)4 实验仿真 (9)4.1 调制仿真图 (9)4.2 解调仿真图 (10)5 实验总结 (10)参考文献 (11)附:程序清单 (12)2PSK调制与解调系统的仿真1 摘要:用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
键控法,即对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
由于PSK在生活中有着广泛的应用,本论文详细介绍了PSK波形的产生和仿真过程。
我们可以系统的了解基本原理,以及得到数字调制波形和解调波形的方法。
利用MATLAB仿真可更好的认识2PSK信号波形调制和解调的过程。
关键词:数字调制、2PSK、调制与解调、Matlab仿真2 2PSK工作原理2.1 2PSK数字调制数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(2PSK)基本的调制方式。
图1相应的信号波形的示例数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
2PSK调制解调系统的设计与仿真首先,信号产生器是2PSK调制解调系统的关键组件之一、它负责产生2PSK调制信号,即包含两个相位的信号。
在设计中,可以使用MATLAB或Python等编程语言生成这样的信号。
例如,我们可以使用MATLAB中的phased.CosineWaveform函数生成一个相位偏移的余弦波形,将其与2π相位偏移的余弦波形相乘,即可得到最终的2PSK信号。
接下来是调制器的设计。
调制器将基带信号转换为射频信号,使其满足2PSK调制的要求。
其中,最常用的调制方案是正交调幅(QAM),通过两个正交的载波信号调制两个相位的数据。
因此,在设计调制器时,需要使用相位差为π/2的两个载波信号进行调制。
解调器的设计主要包括信号采样和相位解调两个步骤。
在解调之前,需要将射频信号经过低通滤波器进行滤波,以去除高频噪声和干扰。
然后,将滤波后的信号进行采样,获取相位差对应的信号样本。
最后,通过比较采样值与预定义阈值的大小,即可确定相位差为0或π,从而完成解调。
最后一步是信号质量评估。
在2PSK调制解调系统中,通常使用误码率(BER)作为评估指标。
通过比较接收端解调后的数据与发送端原始数据的差异,即可计算出BER。
在设计仿真中,可以通过对接收端添加高斯白噪声,模拟真实环境中的信道干扰,进而计算BER。
在进行2PSK调制解调系统的仿真时,可以使用Simulink工具箱进行建模和仿真。
在Simulink中,可以通过搭建信号产生器、调制器、解调器、滤波器以及误码率计算等模块的连接,实现整个系统的设计和仿真。
通过调整不同的参数和信道条件,可以评估系统在不同情况下的性能。
综上所述,2PSK调制解调系统的设计与仿真主要包括信号产生器、调制器、解调器和信号质量评估这几个部分。
通过合理设计和仿真,可以有效评估2PSK调制解调系统的性能,并对系统进行优化和改进。
同时,这也为更复杂的调制解调系统的设计提供了基础和指导。
2PSK与2DPSK系统性能分析1.课程设计目的(1) 掌握2PSK、2DPSK的调制与解调原理;(2) 掌握仿真软件matlab的使用方法;(3) 完成对2PSK、2DPSK的调制与解调仿真电路设计,并对仿真结果进行分析。
2.课程设计要求(1)了解2PSK系统包括几部分,及每部分的功能特性。
(2) 了解2DPSK系统包括几部分,及每部分的功能特性。
(3) 就其调制部分,利用分立元件搭建电路。
(4) 掌握理论联系实践的方法。
3.相关知识3.1 matlab软件的应用MATLAB是矩阵实验室(Matrix Laboratory)之意。
除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学,工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多.MATLAB软件具有以下特点:(1) 高效方便的矩阵和数组运算(2) 编程效率高(3) 方便的绘图功能(4) 用户界面友好(5) 扩充能力强(6) 开放的源程序(7) 语句简单(8) 是解释性语言(9) MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。
由于MATLAB 的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。
3.2 2PSK部分3.2.1 2PSK信号的定义(t)中的载波0相位;数字信号数字信号b(t)的“1”都对应于已调信号e2PSKb(t)的“0”都对应于已调信号中e(t)载波π相位,反之亦然。
这种调相方式2DPSK称为“绝对调相”。
又称二相绝对调相(2PSK)。
3.2.2 2PSK信号的产生1.2PSK信号的调制原理框图(1)模拟调制方法双极性图3.1 2PSK信号的模拟调制法框图(2)键控法开关电路cosw c t πs(t) 图3.2 2PSK 信号的键控法框图 2.2PSK 信号的解调原理框图e 2PSK (t) a c d e 输出cosw c t b 定时 脉冲 图3.3 2PSK 信号的相干解调框图因2PSK 已调信号的包络幅度不变,所以不能采用包络检波法, 通常采用相干解调法解出2PSK 的已调信号。