数字频率计实验报告
- 格式:doc
- 大小:2.71 MB
- 文档页数:31
实验四数字频率计设计【实验目的】1.掌握数字频率计的Verilog描述方法;2.学习设计仿真工具的使用方法;3.学习层次化设计方法;【实验内容】1.用4位十进制计数器对用户输入时钟进行计数,计数间隔为1秒,计数满1秒后将计数值(即频率值)锁存到4位寄存器中显示,并将计数器清0,再进行下一次计数。
2.为上述设计建立元件符号【实验原理】根据频率的定义和频率测量的基本原理,测定信号的频率必须有一个脉宽位1 秒的输入信号脉冲计数允许信号;1秒计数结束后,计数值锁入锁存器的锁存信号和为下一次测频计数周期做准备的计数器清零信号。
这3个信号由测频控制信号发生器TESTCTL产生,它的设计要求是,TESTCTL的计数使能信号输出CNT_EN 能产生一个1秒脉宽的周期信号,并对频率计的每一计数器CNT10的ENA使能端进行同步控制。
当CNT_EN高电平时,允许计数;当CNT_EN低电平时停止计数,并保持所计的脉冲数。
在停止计数期间,首先需要一个锁存信号LOAD的上跳沿将计数器在前1秒钟的计数值锁存进各个锁存器REG4B中,并由外部的七段译码器译出,显示计数值。
设置锁存器的好处是,显示数据稳定,不会由于周期性的清零信号而不断闪烁。
信号锁存之后,还必须用清零信号RST_CNT对计数器进行清零,为下1秒钟的计数操作做准备。
【程序源代码】(加注释)module CNT10(CLK,RST,EN,COUT,DOUT); //4位计数器input CLK,RST,EN; //时钟,复位,时钟使能output COUT; //计数进位输出output[3:0] DOUT; //计数数据输出[3:0] Q; reg COUT;always @ (posedge CLK or posedge RST)begin //时序部分if(RST) Q=0; //RST=1时,对内部寄存器单元异步清零else if(EN) begin //同步使能EN=1,则允许计数if(Q<9) Q=Q+1; //当Q小于9时,累加计数else Q=0;end //否则一个时钟后清0返回初值endalways @ (Q) //组合电路过程if(Q==4'b1001) COUT=1; //当Q==4'b1001时,输出进位COUT=1else COUT=0; //否则,输出进位为0assign DOUT=Q; //把Q赋值给DOUTendmodulemodule RGB4(DIN,LOAD,DOUT); //4为数据寄存器input LOAD; //加载信号input[3:0] DIN; //外加输入信号output[3:0] DOUT;reg[3:0] DOUT;always @ (posedge LOAD)DOUT=DIN; // LOAD有效则将外加输入信号加载endmodulemodule CNTL(CLK,CNL_EN,RST_CNL,LOAD);//控制部分input CLK; //由CLK信号产生CNL_EN,RST_CNL,LOAD信号output CNL_EN,RST_CNL,LOAD; 时钟使能,时钟复位,数据加载控制信号reg CLKDIV,CNL_EN,LOAD,RST_CNL;always @ (posedge CLK)CLKDIV=~CLKDIV; //在时钟信号在上升沿时,将CLKDIV取反always @ (posedge CLK) beginCNL_EN=CLKDIV; //在时钟信号在上升沿时, 把CLKDIV赋给使能信号CNL_EN LOAD=~CLKDIV;end //在时钟信号在上升沿时, 将CLKDIV取反并赋值给加载信号always @ (CLK) beginif(CLK==1'b0&&CNL_EN==1'b0)RST_CNL=1; //当使能信号与时钟信号均为低电平时,RST_CNL=1 elseRST_CNL=0; end //否则RST_CNL=0endmodulemodule FREG (clk1HZ,uclk,led0,led1,led2,led3,rst,en,load);input clk1HZ, uclk; //时钟信号和待测信号output [3:0]led0,led1,led2,led3; //4个八段数码管output load,rst,en; //复位和加载信号wire in_load,in_rst,in_en,c0,c1,c2;wire [3:0]dout0,dout1,dout2,dout3;assign load=in_load;assign rst=in_rst;assign en=in_en;CNTL u1(.CLK(clk1HZ),.CNL_EN(in_en),.RST_CNL(in_rst),.LOAD(in_load));CNT10 u2 (.CLK(uclk),.EN(in_en),.RST(in_rst),.COUT(c0),.DOUT(dout0));CNT10 u3 (.CLK(c0),.EN(in_en),.RST(in_rst),.COUT(c1),.DOUT(dout1));CNT10 u4 (.CLK(c1),.EN(in_en),.RST(in_rst),.COUT(c2),.DOUT(dout2));CNT10 u5 (.CLK(c2),.EN(in_en),.RST(in_rst),.DOUT(dout3));RGB4 u6 (.DIN(dout0),.LOAD(in_load),.DOUT(led0));RGB4 u7 (.DIN(dout1),.LOAD(in_load),.DOUT(led1));RGB4 u8 (.DIN(dout2),.LOAD(in_load),.DOUT(led2));RGB4 u9 (.DIN(dout3),.LOAD(in_load),.DOUT(led3));LED7 u10 (.IN(led0));LED7 u11 (.IN(led1));LED7 u12 (.IN(led2));LED7 u13 (.IN(led3));endmodule【元件符号与总框图】【仿真和测试结果】功能分析:在波形中,CLK1HZ的频率为1HZ,以CLK1HZ为输入,产生CNL_EN(en),RST_CNL(rst),LOAD(load)的输出波形。
数字频率计设计报告书一、设计要求设计一个4位十进制数字式频率计,最大测量范围为10MHz。
量程分10kHz、100kHz、1MHz和10MHz四档(最大读数分别为9.999kHz、99.99kHz、999.9kHz、9999.kHz).量程自动转换规则如下:(1)当读数大于9999时,频率计处于超量程状态,此时显示器发出溢出指示,下一次测量时,量程自动增大一档,小数点位置随量程变更自动移位。
(2)可用手动方式使量程在每次测量开始时处于最低档。
显示方式如下:(3)采用记忆显示方式,即计数过程中不显示数据,待计数过程结束以后,显示计数结果,将此显示结果保持到下一次计数结束。
显示时间应不小于1s。
(4)送入信号应是符合CMOS电路要求的脉冲波,对于小信号模拟信号应有放大整形电路。
二、方案设计<1>整体思路所谓频率就是周期性信号在单位时间 (1s)内变化的次数。
若在一定时间间隔 T内测得周期性信号的重复变化次数为 N ,则频率可表示为 f =N /T (Hz)。
被测信号fx经放大整形电路变成计数电路所要求的脉冲信号,其频率与被测信号fx的频率相同。
基准电路提供标准时间基准信号clk,其高电平持续时间 t 1 = 1 s,当 1 s信号来到时 ,闸门电路开通 ,被测脉冲信号通过闸门电路,成为计数电路的计数脉冲 CP,计数电路开始计数,直到 ls信号结束时闸门电路关闭 ,停止计数。
若在闸门时间 1 s内计数电路计得的脉冲个数为 N ,则被测信号频率 f =NHz。
控制电路的作用有两个:一是产生锁存脉冲 CLK,使显示电路上的数字稳定;二是产生清“0”脉冲,使计数电路每次测量从零开始计数。
<2>时钟信号的选择设计电路中时钟信号采用12M有源晶振产生,下面是12M有源晶振引脚图:<3>整形电路的选择整形电路中可以用运算放大器LM311组成电压选择器实现,以下是关于此芯片的资料:引脚功能:GROUND/GND 接地INPUT + 正向输入端INPUT - 反向输入端OUTPUT 输出端BALANCE 平衡BALANCE/STROBE 平衡/选通V+ 电源正V- 电源负NC 空脚LM311引脚图由于LM311过于复杂且此次设计要求精度不高,整形电路可以改为如下电路:这样产生稳定3.3V为幅值的信号送入EPM570中,对芯片起到保护作用。
频率计实验报告一、实验目的本次实验的目的是通过设计和搭建频率计电路,掌握频率测量的基本原理和方法,熟悉相关电子元器件的使用,提高电路设计和调试的能力,并深入理解数字电路中计数器、定时器等模块的工作原理。
二、实验原理频率是指周期性信号在单位时间内重复的次数。
频率计的基本原理是通过对输入信号的周期进行测量,并将其转换为频率值进行显示。
常见的频率测量方法有直接测频法和间接测频法。
直接测频法是在给定的闸门时间内,对输入信号的脉冲个数进行计数,从而得到信号的频率。
间接测频法则是先测量信号的周期,然后通过倒数计算出频率。
在本次实验中,我们采用直接测频法。
使用计数器对输入信号的脉冲进行计数,同时使用定时器产生固定的闸门时间。
在闸门时间结束后,读取计数器的值,并通过计算得到输入信号的频率。
三、实验设备与器材1、数字电路实验箱2、示波器3、函数信号发生器4、集成电路芯片(如计数器芯片、定时器芯片等)5、电阻、电容、导线等若干四、实验步骤1、设计电路原理图根据实验要求和原理,选择合适的计数器芯片和定时器芯片,并设计出相应的电路连接图。
确定芯片的引脚连接方式,以及与外部输入输出信号的连接关系。
2、搭建实验电路在数字电路实验箱上,按照设计好的电路原理图,插入相应的芯片和元器件,并使用导线进行连接。
仔细检查电路连接是否正确,确保无短路和断路现象。
3、调试电路接通实验箱电源,使用示波器观察输入信号和输出信号的波形,检查电路是否正常工作。
调整函数信号发生器的输出频率和幅度,观察频率计的测量结果是否准确。
4、记录实验数据在不同的输入信号频率下,记录频率计的测量值,并与函数信号发生器的设定值进行比较。
分析测量误差产生的原因,并尝试采取相应的措施进行改进。
五、实验数据与分析以下是在实验中记录的部分数据:|输入信号频率(Hz)|测量值(Hz)|误差(%)||||||100|98|2||500|495|1||1000|990|1||2000|1980|1|从数据中可以看出,测量值与输入信号的实际频率存在一定的误差。
考虑到测量方便,将数字频率计划分为四档:10~99Hz 、100~999Hz 、1000~9999Hz 、10000~99999Hz 。
这样可以保证每一档三位有效数字,而且第三位有效数字误差在±2以内时即可达到精度要求。
三个输入信号:待测信号、标准时钟脉冲信号和复位脉冲信号。
设计细化要求:频率计能根据数字频率计设计计双0102 雷昊 2001011830786一、课程设计内容及要求本次课程设计要求设计并用FPGA 实现一个数字频率计,具体设计要求如下:测量频率范围: 10Hz ~100KHz 精度: ΔF / F ≤ ±2 %系统外部时钟: 1024Hz 测量波形: 方波 Vp-p = 3~5 V 硬件设备:Altera Flex10K10 五位数码管 LED 发光二极管编程语言:Verilog HDL / VHDL二、系统总体设计输入待测信号频率自动选择量程,并在超过最大量程时显示过量程,当复位脉冲到来时,系统复位,重新开始计数显示频率。
基于上述要求,可以将系统基本划分为四个模块,分别为分频、计数、锁存和控制,并可以确定基本的连接和反馈,如上图所示。
三、系统及模块设计与说明如左图所示为数字频率计测量频率的原理图。
已知给定标准时钟脉冲高电平时间,将此0T 高电平信号作为计数器闸门电平,通过计数器得到时间内待测脉冲的个数N ,则有。
由图示可以看出,一个闸门电平时间内0T 0T Nf计数的最大误差为N ±1,为保证误差要求取N ≥100。
经计算,四档的闸门电平时间分0T 别为10s 、1s 、0.1s 和0.01s 。
仅对计数器计数值N 进行简单的移位即可得到结果。
产生闸门电平的工作由分频器完成。
分频器采用计数分频的方法,产生计数闸门电平和一系列控制脉冲,并接受计数器和控制器的反馈。
控制器主要用来判断计数器计数是否有效,从而控制档位转换,锁存器打开、关闭和设定值。
计数器在分频器和控制器的作用下对输入待测信号计数,并把计数值输出,在计数溢出时向控制器和分频器发送溢出脉冲。
成绩指导教师日期张歆奕2011-5-12 五邑大学实验报告实验课程名称:电子系统EDA院系名称:信息学院专业名称:通信工程实验项目名称:实验3 数字频率计班级:AP08054 学号:AP0805422 报告人:彭志敏实验3 数字频率计一、实验目的1、学会利用Quartus II 进行层次化设计;2、练习混合设计输入方法;3、巩固用实验箱验证设计的方法。
二、频率计的原理数字频率计是用来测量输入信号的频率并显示测量结果的系统。
一般基准时钟的高电平的持续时间为01T S ,若在这0T 内被测信号的周期数为N 则被测信号的频率就是N ,选择不同的0T ,可以得到不同的测量精度。
一般0T 越大,测量精度越高,但一次的测量时间及频率计所需的硬件资源也增加。
下面是数字频率计测量原理示意图(图一):▲图一:数字频率计测量原理示意图三、频率计设计及其简要说明(可分模块进行说明)数字频率计可由三模块组成,控制模块、计数模块、锁存显示模块。
下面先介绍顶层设计,然后分模块介绍。
1.顶层设计。
改频率计顶层设计采用原理设计,主要包过6个10进制计数器,一个门控制电路和一个锁存器。
输入引脚包括时钟信号CLK 和复位按钮reset 以及待测频率信号输入端signer ,输出引脚一个24位output 。
▲图二:数字频率计顶层设计原理图2.控制模块。
控制模块是此次设计的设计重点和难点,在标准时钟的作用下,它需要提供计数模块的时钟信号和周期为2秒的控制信号,还要提供锁存器必要时候的锁存允许信号,在一定时候锁存计数器测得的频率值。
主要由门电路和D 触发器构成,下面是控制模块原理图(图三)和时序图(图四)。
▲图三控制模块原理图▲图四控制模块时序图3.计数模块。
计数模块有六个相同的十进制计数器构成,各级计数器之间采用级联方式。
计数器就就采用参数化宏单元调用即可。
下图是参数化宏单元计数器生成的符号(图五):▲图五 10进制计数器4.锁存显示模块。
的工作由分频器完成。
分频器采用计数分频的方法,产生计数闸门电平和一系列控制脉冲,并接受计数器和控制器的反馈。
控制器主要用来判断计数器计数是否有效,从而控制档位转换,锁存器打开、关闭和设定值。
计数器在分频器和控制器的作用下对输入待测信号计数,并把计数值输出,在计数溢出时向控制器和分频器发送溢出脉冲。
锁存器用来储存有效计数值,以稳定输出。
四、系统及模块具体实现与说明系统总体结构图见附图1,下面对每一个模块的具体功能、引脚分配和Verilog HDL语言编程实现进行详细说明。
在分模块介绍之前先说明两个重要的寄存器状态STAT[1..0]和LATCH_STAT[1..0]。
STAT[1..0]用来保存当前档位信息,STA T[1..0]等于0则为第一档,等于1则为第二档,依此类推,共可标记四档,它位于控制模块中,也是输出,这样其他模块可以通过访问它得到当前档位信息,而控制模块可以修改它从而调整档位(注:在系统总图中由于所有与STAT[1..0]相连的线路均为对应顺序连接,故没有才用MAX+plus II中默认的总线连接,而是采用单根线)。
LATCH_STAT[1..0]用来保存锁存器状态信息,LATCH_STA T[1..0]=0时,锁存器在CLK作用下打开关闭。
LATCH_STAT[1..0]=1时,锁存器强制置零,CLK无效。
LATCH_STA T[1..0]=2时,锁存器强制置1FFFF,CLK无效。
它也在控制器中,这样可以通过对其改变数值达到控制锁存器锁存、复位和显示过量程的功能。
计数器COUNTER计数器设计图见附图1右上部分,由四个十进制计数器级联。
四个输入端口:时钟脉冲CLK、使能端EN、清零端CLRN、档位状态端STAT[1..0]。
五个输出端口:四个四位十进制BCD码输出OUT1[3..0]~OUT4[3..0]、过量程溢出OF。
功能表见下:表格1十进制计数器功能表进制计数器用V erilogHDL语言编程实现。
实验四:数字频率计的设计1.实验目的(1)熟悉Quartus Ⅱ/ISE Suite/ispLEVER软件的基本使用方法。
(2)熟悉GW48-CK或其他EDA实验开发系统的基本使用方法。
(3)学习VHDL基本逻辑电路的综合设计应用。
2.实验内容设计并调试好8位十进制数字频率计,并用GW48-CK或其他EDA实验开发系统(事先应选定拟采用的实验芯片的型号)进行硬件验证。
3.实验要求(1)画出系统的原理图,说明系统中各主要组成部分的功能。
(2)编写各个VHDL源程序。
(3)根据系统的功能,选好测试用例,画出测试输入信号波形或编号测试程序。
(4)根据选用的EDA实验开发装置编好用于硬件验证的管脚锁定表格或文件。
(5)记录系统仿真、逻辑综合及硬件验证结果。
(6)记录实验过程中出现的问题及解决办法。
4.实验条件(1)开发条件:Quartus Ⅱ 8.0。
(2)实验设备:GW48-CK实验开发系统。
(3)拟用芯片:EP3C5F484C8N。
5.实验设计1)系统原理图本设计8位数字频率计,它由1个CLKGEN分频模块,1个测频控制信号发生器TESTCTL、8个有时钟使能的十进制计数器CNT10、1个32位锁存器REG32B,动态信号产生模块CTRLS、数据动态显示模块DISPLAY组成。
6个模块按照图4.1所示的原理图构成顶层电路dtFREQ。
图4.1分频、测频、锁存模块图 4.2 dtFREQ电路原理图2)VHDL程序数字频率计FREQ的底层和顶层电路均采用VHDL文本输入,有关VHDL程CNT10的VHDL源程序:--CNT10.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK: IN STD_LOGIC;CLR: IN STD_LOGIC;ENA: IN STD_LOGIC;CQ: OUT STD_LOGIC_VECTOR(3 DOWNTO 0); CO: OUT STD_LOGIC );END ENTITY CNT10;ARCHITECTURE ART OF CNT10 ISSIGNAL CQI: STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINPROCESS(CLK, CLR, ENA) ISBEGINIF CLR='1' THEN CQI<="0000";ELSIF CLK'EVENT AND CLK='1' THENIF ENA='1' THENIF CQI="1001" THENCQI<="0000";ELSECQI<=CQI+'1';END IF;END IF;END IF;END PROCESS;PROCESS(CLK, CQI) ISBEGINIF CLK'EVENT AND CLK='1' THENIF CQI<"1001" THENCO<='0';ELSECO<='1';END IF;END PROCESS;CQ<=CQI;END ARCHITECTURE ART;REG32B的VHDL源程序:--REG32B.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY REG32B ISPORT(LOAD: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(31 DOWNTO 0);DOUT: OUT STD_LOGIC_VECTOR(31 DOWNTO 0)); END ENTITY REG32B;ARCHITECTURE ART OF REG32B ISBEGINPROCESS(LOAD,DIN) ISBEGINIF(LOAD'EVENT AND LOAD='1')THENDOUT<=DIN;END IF;END PROCESS;END ARCHITECTURE ART;TESTCTL的VHDL源程序:--TESTCTL.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY TESTCTL ISPORT(CLK: IN STD_LOGIC;TSTEN: OUT STD_LOGIC;CLR_CNT: OUT STD_LOGIC;LOAD: OUT STD_LOGIC);END ENTITY TESTCTL;ARCHITECTURE ART OF TESTCTL ISSIGNAL DIV2CLK: STD_LOGIC;BEGINPROCESS(CLK) ISBEGINIF CLK'EVENT AND CLK='1' THENDIV2CLK<=NOT DIV2CLK;END IF;END PROCESS;PROCESS(CLK, DIV2CLK) ISBEGINIF CLK='0' AND DIV2CLK='0' THENCLR_CNT<='1';ELSE CLR_CNT<='0';END IF;END PROCESS;LOAD<=NOT DIV2CLK;TSTEN<=DIV2CLK;END ARCHITECTURE ART;CLKGEN的VHDL源程序:--CLKGEN.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY CLKGEN ISPORT(CLK_IN: IN STD_LOGIC;RESET: IN STD_LOGIC;CLK_OUT: OUT STD_LOGIC );END ENTITY CLKGEN;ARCHITECTURE ART OF CLKGEN ISCONSTANT DIVIDE_PERIOD:INTEGER:=50000000; --50MHZ TO 1HZ BEGINPROCESS(CLK_IN,RESET) ISVARIABLE CNT:INTEGER RANGE 0 TO 49999999;BEGINIF(RESET='1')THENCNT :=0;CLK_OUT<='0';ELSIF RISING_EDGE(CLK_IN) THENIF(CNT<(DIVIDE_PERIOD/2)) THENCLK_OUT<='1';CNT:=CNT+1;ELSIF(CNT<(DIVIDE_PERIOD-1)) THENCLK_OUT<='0';CNT:=CNT+1;ELSECNT:=0;END IF;END IF;END PROCESS DIVIDE_CLK;END ARCHITECTURE ART;CTRLS的VHDL源程序--CTRLS.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CTRLS ISPORT(CLK: IN STD_LOGIC;SEL: OUT STD_LOGIC_VECTOR(2 DOWNTO 0)); END ENTITY CTRLS;ARCHITECTURE ART OF CTRLS ISSIGNAL CNT:STD_LOGIC_VECTOR(2 DOWNTO 0); BEGINPROCESS(CLK) ISBEGINIF CLK'EVENT AND CLK='1' THENIF CNT="111" THENCNT<="000";ELSECNT<=CNT+'1';END IF;END IF;END PROCESS;SEL<=CNT;END ARCHITECTURE ART;DISPLAY的VHDL源程序--DISPLAY.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY DISPLAY ISPORT( SEL: IN STD_LOGIC_VECTOR(2 DOWNTO 0); DATAIN: IN STD_LOGIC_VECTOR(31 DOWNTO 0); COM: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); SEG: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY DISPLAY;ARCHITECTURE ART OF DISPLAY ISSIGNAL DATA: STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINP1:PROCESS(SEL) ISBEGINCASE SEL ISWHEN"000"=>COM<="11111110";WHEN"001"=>COM<="11111101";WHEN"010"=>COM<="11111011";WHEN"011"=>COM<="11110111";WHEN"100"=>COM<="11101111";WHEN"101"=>COM<="11011111";WHEN"110"=>COM<="10111111";WHEN"111"=>COM<="01111111";WHEN OTHERS=>COM<="11111111";END CASE;END PROCESS P1;P2:PROCESS(SEL)BEGINCASE SEL ISWHEN"000"=>DATA<=DATAIN(3 DOWNTO 0); WHEN"001"=>DATA<=DATAIN(7 DOWNTO 4); WHEN"010"=>DATA<=DATAIN(11 DOWNTO 8); WHEN"011"=>DATA<=DATAIN(15 DOWNTO 12); WHEN"100"=>DATA<=DATAIN(19 DOWNTO 16);WHEN"101"=>DATA<=DATAIN(23 DOWNTO 20); WHEN"110"=>DATA<=DATAIN(27 DOWNTO 24); WHEN"111"=>DATA<=DATAIN(31 DOWNTO 28); WHEN OTHERS=>DATA<="0000";END CASE;CASE DATA ISWHEN"0000"=>SEG<="00111111";WHEN"0001"=>SEG<="00000110";WHEN"0010"=>SEG<="01011011";WHEN"0011"=>SEG<="01001111";WHEN"0100"=>SEG<="01100110";WHEN"0101"=>SEG<="01101101";WHEN"0110"=>SEG<="01111101";WHEN"0111"=>SEG<="00000111";WHEN"1000"=>SEG<="01111111";WHEN"1001"=>SEG<="01101111";WHEN OTHERS=>SEG<="00000000";END CASE;END PROCESS P2;END ARCHITECTURE ART;dtFREQ的VHDL源程序:--dtFREQ.VHDLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY dtFREQ ISPORT(FSIN: IN STD_LOGIC;CLK: IN STD_LOGIC;CLK2:IN STD_LOGIC;RESET: IN STD_LOGIC;SEG: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); COM: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY dtFREQ;ARCHITECTURE ART OF dtFREQ IS--CNT10COMPONENT CNT10 ISPORT(CLK, CLR, ENA: IN STD_LOGIC;CQ: OUT STD_LOGIC_VECTOR(3 DOWNTO 0);CO: OUT STD_LOGIC);END COMPONENT CNT10;--REG32BCOMPONENT REG32B ISPORT(LOAD: IN STD_LOGIC;DIN: IN STD_LOGIC_VECTOR(31 DOWNTO 0);DOUT: OUT STD_LOGIC_VECTOR(31 DOWNTO 0)); END COMPONENT REG32B;--TESTCTLCOMPONENT TESTCTL ISPORT(CLK: IN STD_LOGIC;TSTEN: OUT STD_LOGIC;CLR_CNT: OUT STD_LOGIC;LOAD: OUT STD_LOGIC);END COMPONENT TESTCTL;--CLKGENCOMPONENT CLKGEN ISPORT(CLK_IN: IN STD_LOGIC;RESET: IN STD_LOGIC;CLK_OUT: OUT STD_LOGIC );END COMPONENT CLKGEN;--CTRLSCOMPONENT CTRLS ISPORT(CLK: IN STD_LOGIC;SEL: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));END COMPONENT CTRLS;--DISPLAYCOMPONENT DISPLAY ISPORT(SEL: IN STD_LOGIC_VECTOR(2 DOWNTO 0);DATAIN: IN STD_LOGIC_VECTOR(31 DOWNTO 0); COM:OUT STD_LOGIC_VECTOR(7 DOWNTO 0);SEG:OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END COMPONENT DISPLAY;SIGNAL SE,SC,SL,CLK1:STD_LOGIC;SIGNAL S0,S1,S2,S3,S4,S5,S6,S7,S8:STD_LOGIC;SIGNAL SD,DOUT:STD_LOGIC_VECTOR(31 DOWNTO 0);SIGNAL SEL:STD_LOGIC_VECTOR(2 DOWNTO 0);BEGINU0:CLKGEN PORT MAP(CLK,RESET,CLK1);U1:TESTCTL PORT MAP(CLK=>CLK1,TSTEN=>SE, CLR_CNT=>SC, LOAD=>SL); U2:CNT10 PORT MAP(CLK=>FSIN, CLR=>SC, ENA=>SE, CQ=>SD(3 DOWNTO 0),CO=>S1);U3:CNT10 PORT MAP(CLK=>S1, CLR=>SC, ENA=>SE, CQ=>SD(7 DOWNTO 4),CO=>S2);U4:CNT10 PORT MAP(S2, SC, SE, SD(11 DOWNTO 8),S3);U5:CNT10 PORT MAP(S3, SC, SE, SD(15 DOWNTO 12),S4);U6:CNT10 PORT MAP(S4, SC, SE, SD(19 DOWNTO 16),S5);U7:CNT10 PORT MAP(S5, SC, SE, SD(23 DOWNTO 20),S6);U8:CNT10 PORT MAP(S6, SC, SE, SD(27 DOWNTO 24),S7);U9:CNT10 PORT MAP(S7, SC, SE, SD(31 DOWNTO 28),S8);U10:REG32B PORT MAP(LOAD=>SL, DIN=>SD, DOUT=>DOUT);U11:CTRLS PORT MAP(CLK2,SEL);U12:DISPLAY PORT MAP(SEL,DOUT,COM(7 DOWNTO 0),SEG(7 DOWNTO 0));END ARCHITECTURE ART;3)仿真波形设置本设计包括三个层次,因此先进行底层的测频信号发生器TESTCTL、计数器CNT10、锁存器REG32B,分频器CLKGEN,动态信号产生模块CTRLS,数据动态显示模块DISPLAY的仿真,再进行顶层dtFREQ的仿真。
电工电子课程设计——数字频率计学生姓名陈卓学号1302060413专业通信工程班级0605指导教师宋学瑞目录第一章技术指标…………………………………………………………第二章整体方案设计…………………………………………………第三章单元电路设计…………………………………………………第四章测试与调整……………………………………………………第五章设计小结………………………………………………………第一章技术指标一.整体功能要求频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
其扩展功能可以测量信号的周期。
二.系统结构要求数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期,若测量频率则自动分档。
数字频率计整体方案结构方框图三、电气指标被测信号波形:正弦波和矩形波。
输入信号电压:0.5~5V测量范围:0~9999Hz和1~100kHz脉冲周期测量范围:100μS~1S具有超量程声、光报警功能显示4位有效数字测量误差小于5%可供选择的元器件见附录第二章整体方案设计现代测量技术及仪器以数字化和智能化为主要发展方向。
数字式时频测量仪器很符合这样的方向。
频率量是几乎不经转换就能得到的数字量,在数字频率计中,被测信号是以脉冲信号方法来传递、控制和计数的,易于做成智能化设备。
数字频率计的基本工作原理是以适当的逻辑电路,使电子计数器在预定的标准时间内累计待测输入信号的脉冲个数,实现频率测量。
频率就是指周期性信号在单位时间内重复出现的次数。
若在一定的时间间隔T内计得这个周期性信号的重复次数N,则其频率可表达为:f=N/T由于计数器可以严格按照上式所表达的频率的定义进行测量,对于上式来说,要测量某个周期现象的频率,就必须解决计数和时间标准问题。
测量方案应至少包括两个部分,即计数部分和时基选择部分。
数字频率计的原理框图如下所示:图A、数字频率计测频原理数字频率计的原理框图如图A所示,从中可以看出测量过程。
数字频率计的设计实验报告实验名称:数字频率计的设计实验日期:2021年7月1日实验目的:设计并实现一个基于计数器的数字频率计,使用计数器测量输入信号的频率,并将结果显示在数码管上。
实验器材:FPGA开发板、数字频率计模块、计数器模块、数码管模块。
实验原理:1. 计数器模块设计一个计数器模块,用于计数示波器输入脉冲信号的时间。
计数器的计数时间可以根据需要进行调整。
2. 数字频率计模块设计一个数字频率计模块,用于将计数器的计数时间转换为输入信号的频率。
通过计算计数器的计数值来计算频率,并将结果显示在数码管上。
3. 数码管模块设计一个数码管模块,用于将数字频率计模块计算出的频率值转换为可以在数码管上显示的数码。
实验步骤:1. 搭建实验电路将FPGA开发板连接到计数器模块、数字频率计模块和数码管模块。
2. 编写Verilog代码根据上述原理,编写计数器模块、数字频率计模块和数码管模块的Verilog代码。
3. 编译代码并下载到FPGA开发板使用Xilinx Vivado软件将Verilog代码编译成比特流文件,并将比特流文件下载到FPGA开发板中。
4. 测试实验将示波器的输出信号连接到数字频率计的输入端,并将数字频率计连接到数码管。
通过计算数字频率计的输出,验证数字频率计的测量准确性。
实验结果:经过测试,数字频率计的测量准确度在实验误差范围内。
输入不同频率的信号时,数码管能够正确显示频率值。
实验总结:通过本次实验,成功设计并实现了一个基于计数器的数字频率计。
该实验不仅巩固了计数器、数码管等模块的设计知识,也提高了学生的Verilog编程能力。
在实验中,学生还学习了如何使用FPGA开发板进行数字电路实验,以及测试和验证数字电路的方法和技巧。
大连理工大学城市学院数字电路与系统课程设计设计题目:数字频率计学院:电子与自动化学院专业:自动化学生:揣智涵同组人:王晓宁周英茹指导教师:于海霞完成日期:2012年3月26日目录第一章设计任务1.1项目名称1.2项目设计说明1.2.1设计任务和要求1.2.2进度安排1.3项目总体功能模块图第二章需求分析2.1问题基本描述(要求分析得出整个系统流程图)2.2系统模块分解及各模块功能的基本要求第三章设计原理3.1 设计原理3.2 MAXPLUSII介绍第四章系统功能模块设计4.1 FEN模块4.1.1 FEN模块流程图4.1.2 输入输出引脚及其功能说明4.1.3 程序代码实现4.2 SEL模块4.2.1 SEL模块流程图4.2.2输入输出引脚及其功能说明4.2.3程序代码实现4.3 CORNA模块4.3.1 CORNA模块流程图4.3.2 输入输出引脚及其功能说明4.3.3 程序代码实现4.4 LOCK模块4.4.1 LOCK模块流程图4.4.2 输入输出引脚及其功能说明4.4.3 程序代码实现4.5 CH模块4.5.1 输入输出引脚及其功能说明4.5.2 程序代码实现4.6 DISP模块4.6.1 输入输出引脚及其功能说明4.6.2 程序代码实现第五章调试并分析结果5.1输入说明5.2预计输出5.3测试结果记录5.4测试结果分析第六章结论心得体会参考文献第一章设计任务1.1 项目名称:数字频率计1.2 项目设计说明1.2.1 设计任务和要求此频率计共分4档:一档:0~9999Hz;二档:10~99.99kHZ;三档:100.0~999.9kHz;,四档:1.000~999MHz;在换挡的设计方面,此程序突破了以往改变闸门时间的方法,使自动换挡的实现更加简单可靠。
1.2.2 进度安排第一节课:画出模块及程序流程图第二节课:调试各模块程序使其无误第三节课:连接整个程序并下载到试验箱是数字频率计的功能实现第四节课:改进程序设计实现创新,然后完成课程设计报告第五节课:完成答辩1.3 项目总体功能模块图如下图1-1第二章需求分析2.1 问题基本描述所谓频率,就是周期信号在单位时间(1秒)内变化的次数。
基于Verilog HDL数字频率计设计与实现学院:专业:学号:姓名:指导老师:完成日期:基于Verilog HDL数字频率计设计与实现摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。
直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。
本文阐述了用Verilog HDL语言设计了一个简单的数字频率计的过程。
关键词:周期;EDA;Verilog HDL;数字频率计;波形仿真.Abstract:Be one of the most fundamental parameter in electron technology medium frequency, parameter measurement scheme, measurement result all have very close something to do with a lot of electricity and, the frequency measurement looks like being more important therefore right away. The method measuring frequency has various, among them the electronic counter measures frequency having accuracy height, usage is convenient, measurement is prompt, easy to realize measurement process共25页automation waits for merit and, counter measures frequency having two kinds way: sure frequency law first directly ,be to measure the pulse number the signal is measured within certain sluice gate time; Two is indirect measure frequency law, if the period measures frequency law, Measure frequency law directly applying to the high frequency signal's. The main .This paper expounds the process of using Verilog HDL to design a simple digital frequency.Keyword: period;EDA;Verilog HDL;Figure frequency meter;wave simulation.目录1 引言 (3)1.1 数字频率计概述: (5)1.2 设计目的: (6)1.3设计内容: (6)1.4 频率测量的思想和方法: (6)共25页2 Verilog HDL简介 (7)3 数字频率计系统框图 (8)3.1数字频率计系统框图: (8)3.2数字频率计系统模块划分结构: (8)4 数字频率计程序设计及实现 (10)4.1分频模块div_clk: (10)4.2基准频率选择模块fbase_sel: (11)4.3门控模块gate_ctrl: (13)4.4计数模块counter: (15)4.5寄存器模块latch: (17)4.6显示模块 display: (19)4.7顶层模块 topfile: (21)5 系统测试 (23)5.1测试数据: (23)5.2误差变化图: (24)5.3结果分析: (24)6 总结 (25)7参考文献 (25)8致谢 (25)附录: (26)1 引言在电子测量领域中,频率测量的精确度是最高的,可达10—10E-13数量级。
因此,在生产过程中许多物理量,例如温度、压力、流量、液位、PH值、振动、共25页位移、速度、加速度,乃至各种气体的百分比成分等均用传感器转换成信号频率,然后用数字频率计来测量,以提高精确度。
国际上数字频率计的分类很多。
按功能分类,测量某种单一功能的计数器。
如频率计数器,只能专门用来测量高频和微波频率;时间计数器,是以测量时间为基础的计数器,其测时分辨力和准确度很高,可达ns数量级;特种计数器,它具有特种功能,如可逆计数器、予置计数器、差值计数器、倒数计数器等,用于工业和白控技术等方面。
数字频率计按频段分类 (1)低速计数器:最高计数频率<10MHz; (2)中速计数器:最高计数频率10—100MHz; (3)高速计数器:最高计数频率>100MHz; (4)微波频率计数器:测频范围1—80GHz或更高。
本实验使用了FPGA工程设计的一般流程(如图1.1所示),使用Verilog HDL 语言设计了基于直接测频法的简单的中速数字频率计。
图1.1 FPGA工程设计的一般流程1.1 数字频率计概述:频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门共25页时间为1秒。
闸门时间也可以大于或小于一秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
本文数字频率计是用数字显示被测信号频率的仪器,被测信号是被放大整形后的正弦波,如配以适当的传感器和整形电路,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器,电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
1.2 设计目的:1.学会使用Veilog 硬件描述语言;2.学会利用Xilinx进行层次化计;3.学会电路模块化设计。
1.3设计内容:设计一个计数式频率计,其频率测量范围为10Hz~10MHz,测量结果用6只数码管显示。
有三个带锁按键开关(任何时候都只能有一个被按下)被用来选择1S、0.1S和0.01S三个闸门时间中的一个。
有两只LED,一只用来显示闸门的开与闭,另一只当计数器溢出时做溢出指示。
图1.3显示了该频率计前面板的基本排布构想。
Frequency CounterINPUTGA TEOVERKHzffPOWER 1s 0.1s 0.01s共25页图1.3 所示该频率计前面板基本排布构想图。
1.4 频率测量的思想和方法:众所周知,频率信号易于传输,抗干扰性强,可以获得较好的测量精度。
因此,频率检测是电子测量领域最基本的测量之一。
频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,即闸门时间为1 s。
闸门时间可以根据需要取值,大于或小于1 s都可以。
闸门时间越长,得到的频率值就越准确,但闸门时间越长,则每测一次频率的间隔就越长。
闸门时间越短,测得的频率值刷新就越快,但测得的频率精度就受影响。
一般取1 s作为闸门时间。
1.频率测量的基本思想测量被测信号在单位时间内的脉冲个数,其数字表达式f = N / t其中:f为被测信号的频率N为脉冲的个数t为被测信号产生N个脉冲所需的时间2.频率测量方法直接测量法:直接测量被测信号的频率,通过计数法来对被测信号在一定时间内的脉冲个数进行计数。
直接测量法的结构框图如图1.4所示。
共25页图1.4 直接测量法的结构框图2 Verilog HDL简介电子设计自动化(EDA)的关键技术之一是要求用形式化方法来描述数字系统的硬件电路,即要用所谓硬件描述语言来描述硬件电路。
所以硬件描述语言及相关的仿真、综合等技术的研究是当今电子设计自动化领域的一个重要课题。
Verilog HDL是一种硬件描述语言(hardware description language),为了制作数位电路(数字电路)而用来描述ASICs和FPGAs的设计之用。
Verilog 的设计者想要以 C 程序语言(en:C programming language)为基础设计一种语言,可以使工程师比较熟悉跟容易接受。
这种语言跟传统的程序设计语言不同,在于它的程序叙述并非严格地线性(循序)执行。
Verilog 模式包含不同模组(modules)的阶层关系。
模组(modules)是输出(inputs)和输入(outputs)所定义出来的一个集合。
在每个模组中,有一串的电线(wires)、暂存器(registers)和子模组(submodules)的定义。
并且在每个模组里面,语言叙述大部分都被群组成为各种的执行区块(blocks),用来定义该模组所产生的行为描述。
在每个区块(blocks)内,使用 begin 和 end 的关键字来区隔开来,其中的叙述是循序被执行。
但是同一个设计,不同的区块间的执行是平行的。
共25页3 数字频率计系统框图3.1数字频率计系统框图:本设计所采用的系统电路框图如图3.1所示。
图3.1.1 所示的数字频率计系统电路框图3.2数字频率计系统模块划分结构:数字频率计中的FPGA是频率计的核心,主要实现在一定时间内,对被测信号的脉冲个数进行计算,并且转化为相应的频率值显示在六个数码管上。
首先将系统分成六个模块来分别设计仿真。
分别有以下七个模块:●分频模块div_clk:将石英产生的标准时钟分频,得到计数以及动态显示所需的时钟,如图3.1.1所示。
●基准频率选择模块fbase_sel:也就是实现图3.1.1所示的闸门选择,根据闸门选择开关的不同,选择对应的频率输出。
●门控模块gate_ctrl:此模块需产生三种控制信号:GATE、CLEAR、LATCH,如图3.1.1所示,GATE控制闸门是否打开同时计数器开始计数,CLEAR控制计数器同步清零,LATCH控制计数器输出值的寄存。
为了能直观的显示出当前选择的基准频率,用当前GATE信号来驱动一个led。
共25页●计数模块counter:对包含被测信号频率信息的脉冲进行计数。
如图3.1.1所示,当门控模块的输出的清零信号将计数器清零后,便输出门控信号将闸门打开时,计数器开始计数。