杨辉三角与二次项系数的性质一
- 格式:pptx
- 大小:448.19 KB
- 文档页数:24
杨辉三角和二项式定理杨辉三角和二项式定理是数学中经典的基本概念和定理,被广泛应用于组合数学、数理统计、微积分等领域。
本文将介绍杨辉三角和二项式定理的定义、性质以及应用。
一、杨辉三角杨辉三角是一种数学图形,是由数字排列成三角形的形式,数字排列的规律性很强,主要是由二项式系数的各个项的系数构成的,又称为帕斯卡三角。
杨辉三角的构造方法如下:1.第一行写上数字1;2.从第二行开始,每相邻的两个数字都是上一行数字的相邻两个数字之和;例子:11 11 2 11 3 3 11 4 6 4 1二、二项式定理二项式定理是代数学中的基本定理,它阐述了将一个二项式求幂的基本方法。
二项式定理的全称为“任意实数a和b以及非负整数n,有:(a+b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + … + C(n, n)b^n”其中C(n, k)为组合数,在组合数学中有明确的定义,即从n个不同元素中选取k个元素的不同组合数。
组合数用符号C(n, k)表示,其计算公式为:C(n, k) = n! / [k! (n-k)!]这样,我们就得到了二项式定理的定义。
三、杨辉三角和二项式定理的联系和应用二项式定理中的系数C(n, k)可以在杨辉三角中找到,这也是杨辉三角的一个重要应用。
具体来说,杨辉三角的第n行第k个数就是C(n, k)。
另外,杨辉三角还可以用来计算排列组合中的一些问题。
例如,需要在n个元素中选取m个元素的不同组合数,这就可以通过杨辉三角中的组合数来解决。
杨辉三角和二项式定理还可以应用于微积分中的泰勒公式、数理统计中的二项分布等问题。
在统计学中,二项分布是一个离散的概率分布,用来计算在n个独立的是/非试验中成功k次的概率。
杨辉三角和二项式定理在数学中属于基本概念和基本定理,对于理解和应用数学知识是非常重要的。
通过了解杨辉三角和二项式定理的定义和性质,可以更好地应用它们来解决实际问题。
杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。
由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。
系数是杨辉三角里的系数。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
“杨辉三角”与二项式系数的性质1.杨辉三角的特点(1)在同一行中,每行两端都是1,与这两个1等距离的项的系数相等.(2)在相邻的两行中,除1以外的每一个数都等于它“肩上”两个数的和,即C rn +1=C r -1n +C rn . 2.二项式系数的性质(1)对称性:在(a +b)n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C 0n =C nn ,C 1n =C n -1n ,…,C r n =C n -rn . (2)增减性与最大值:当k <n +12时,二项式系数是逐渐增大的,由对称性知它的后半部分是逐渐减小的,且在中间取到最大值.当n 是偶数时,中间一项的二项式系数C n2n 取得最大值;当n 是奇数时,中间两项的二项式系数C n -12n,Cn +12n相等,且同时取到最大值.(3)各二项式系数的和: ①C 0n +C 1n +C 2n +…+C n n =2n.②C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.对二项式性质的理解(1)求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到次数等限制条件.(2)奇数项的二项式系数和与偶数项的二项式系数和相等,但这并不意味着等号两边的二项式系数个数相等.当n 为偶数时,奇数项的二项式系数多一个;当n 为奇数时,奇数项的二项式系数与偶数项的二项式系数个数相同.(3)系数最大的项不一定是二项式系数最大的项,只有当二项式系数与各项系数相等时,二者才一致.判断正误(正确的打“√”,错误的打“×”)(1)杨辉三角的每一斜行数字的差成一个等差数列.( )(2)二项式展开式中系数最大项与二项式系数最大项是相同的.( ) (3)二项展开式的二项式系数和为C 1n +C 2n +…+C nn .( ) 答案:(1)√ (2)× (3)×在(a +b )10的二项展开式中与第3项二项式系数相同的项是( ) A .第8项 B .第7项 C .第9项D .第10项答案:C在(1+x)n(n∈N*)的二项展开式中,若只有x5的系数最大,则n等于( )A.8 B.9C.10 D.11答案:C如图是一个类似杨辉三角的递推式,则第n行的首尾两个数均为________.答案:2n-1探究点1 与杨辉三角有关的问题(1)杨辉三角如图所示,杨辉三角中的第5行除去两端数字1以外,均能被5整除,则具有类似性质的行是( )A.第6行B.第7行C.第8行D.第9行(2)如图,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)等于( )A.144 B.146C.164 D.461【解析】(1)由题意,第6行为1 6 15 20 15 6 1,第7行为1 7 21 35 35 21 7 1,故第7行除去两端数字1以外,均能被7整除.(2)由题干图知,数列中的首项是C22,第2项是C12,第3项是C23,第4项是C13,…,第15项是C29,第16项是C19.所以S(16)=C12+C22+C13+C23+…+C19+C29=(C12+C13+…+C19)+(C22+C23+…+C29)=(C22+C12+C13+…+C19-C22)+(C33+C23+…+C29)=C210+C310-1=164.【答案】(1)B (2)C解决与杨辉三角有关的问题的一般思路如图,在由二项式系数所构成的杨辉三角中,第________行中从左到右第14与第15个数的比为2∶3.解析:由杨辉三角知,第一行中的数是C01、C11;第2行中的数是C02、C12、C22;第3行中的数是C03、C13、C23、C33;…;第n行中的数是C0n、C1n、C2n、…、C n n.设第n行中从左到右第14与第15个数的比为2∶3,则C13n∶C14n=2∶3,解之得n=34.答案:34探究点2 二项式系数和问题已知(2x-1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5.求下列各式的值:(1)a0+a1+a2+…+a5;(2)|a0|+|a1|+|a2|+…+|a5|;(3)a1+a3+a5.【解】(1)令x=1,得a0+a1+a2+…+a5=1.(2)令x=-1,得-35=-a0+a1-a2+a3-a4+a5.由(2x-1)5的通项T r+1=C r5(-1)r·25-r·x5-r知a1,a3,a5为负值,所以|a 0|+|a 1|+|a 2|+…+|a 5| =a 0-a 1+a 2-a 3+a 4-a 5=35=243. (3)由a 0+a 1+a 2+…+a 5=1, -a 0+a 1-a 2+…+a 5=-35, 得2(a 1+a 3+a 5)=1-35, 所以a 1+a 3+a 5=1-352=-121.[变问法]在本例条件下,求下列各式的值: (1)a 0+a 2+a 4; (2)a 1+a 2+a 3+a 4+a 5; (3)5a 0+4a 1+3a 2+2a 3+a 4.解:(1)因为a 0+a 1+a 2+…+a 5=1, -a 0+a 1-a 2+…+a 5=-35. 所以a 0+a 2+a 4=1+352=122.(2)因为a 0是(2x -1)5展开式中x 5的系数, 所以a 0=25=32.又a 0+a 1+a 2+…+a 5=1, 所以a 1+a 2+a 3+a 4+a 5=-31.(3)因为(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.所以两边求导数得10(2x -1)4=5a 0x 4+4a 1x 3+3a 2x 2+2a 3x +a 4. 令x =1得5a 0+4a 1+3a 2+2a 3+a 4=10.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n, 则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2, 偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.如果⎝⎛⎭⎪⎪⎫3x -13x 2n的展开式中各项系数之和为128,那么n 的值为( ) A .7 B .8 C .9D .10解析:选A.因为展开式中各项系数之和为128,所以令x =1,得2n=128,所以n =7. 2.若(1+x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+…+a 7的值是( ) A .-2 B .-3 C .125D .-131解析:选C.由题意可知a 8=(-2)7=-128,令x =0,得a 0=1,令x =1,得a 0+a 1+a 2+…+a 7+a 8=-2,所以a 1+a 2+…+a 7=125.故选C. 探究点3 求二项展开式中系数或二项式系数的最大项已知二项式(12+2x )n.(1)若展开式中第5项、第6项、第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式中前三项的二项式系数和等于79,求展开式中系数最大的项. 【解】 (1)由题意,得C 4n +C 6n =2C 5n , 所以n 2-21n +98=0, 所以n =7或n =14.当n =7时,展开式中二项式系数最大的项是T 4和T 5,T 4的系数为C 37×(12)4×23=352,T 5的系数为C 47×(12)3×24=70.故展开式中二项式系数最大项的系数分别为352,70.当n =14时,展开式中二项式系数最大的项是T 8, 所以T 8的系数为C 714×(12)7×27=3 432.故展开式中二项式系数最大的项的系数为3 432. (2)由题意知C 0n +C 1n +C 2n =79, 解得n =12或n =-13(舍去). 设展开式中第(r +1)项的系数最大, 由于(12+2x )12=(12)12·(1+4x )12,则⎩⎪⎨⎪⎧C r12·4r≥C r -112·4r -1,C r 12·4r ≥C r +112·4r +1,所以9.4≤r ≤10.4.又r ∈{0,1,2,…,12},所以r =10, 所以系数最大的项为T 11,且T 11=(12)12·C 1012·(4x )10=16 896x 10.(1)二项式系数的最大项的求法求二项式系数的最大项,根据二项式系数的性质对(a +b )n中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大. ②当n 为偶数时,中间一项的二项式系数最大. (2)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n(a ,b ∈R)的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第r +1项最大,应用⎩⎪⎨⎪⎧A r ≥A r -1,A r ≥A r +1,解出r ,即得出系数的最大项.已知在⎝⎛⎭⎪⎪⎫x -23x n的展开式中,第5项的系数与第3项的系数之比是56∶3. (1)求展开式中的所有有理项; (2)求展开式中系数绝对值最大的项. 解:(1)由C 4n (-2)4∶C 2n (-2)2=56∶3, 解得n =10,因为通项:T r +1=C r10(x )10-r⎝⎛⎭⎪⎪⎫-23x r=(-2)r C r10x 5-5r 6,当5-5r 6为整数时,r 可取0,6,于是有理项为T 1=x 5和T 7=13 440.(2)设第r +1项系数绝对值最大,则⎩⎪⎨⎪⎧C r102r≥C r -1102r -1,C r 102r ≥C r +1102r +1,解得⎩⎪⎨⎪⎧r ≤223,r ≥193,又因为r ∈{1,2,3,…,9},所以r =7,当r =7时,T 8=-15 360x -56,又因为当r =0时,T 1=x 5,当r =10时,T 11=(-2)10x -103=1 024x -103,所以系数绝对值最大的项为T 8=-15 360x -56.1.⎝ ⎛⎭⎪⎫x -1x 11的展开式中二项式系数最大的项是( ) A .第6项 B .第8项 C .第5,6项D .第6,7项解析:选D.由n =11为奇数,则展开式中第11+12项和第11+12+1项,即第6项和第7项的二项式系数相等,且最大.2.已知⎝⎛⎭⎪⎫x 2+1x n的二项展开式的各项系数和为32,则二项展开式中x 4的系数为( )A .5B .10C .20D .40解析:选B.因为⎝ ⎛⎭⎪⎫x 2+1x n的二项展开式的各项系数和为32,所以令x =1得2n=32,所以n=5.所以⎝ ⎛⎭⎪⎫x 2+1x 5的二项展开式的第r +1项T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5x 10-3r,令10-3r =4,得r =2,故二项展开式中x 4的系数为C 25=10.3.已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A .212B .211C .210D .29解析:选D.因为(1+x )n的展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n ,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.4.若C 2n +620=C n +220(n ∈N *),且(2-x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 0-a 1+a 2-…+(-1)na n =________.解析:由C 2n +620=C n +220可知n =4,令x =-1,可得a 0-a 1+a 2-…+(-1)n a n =34=81.知识结构深化拓展释疑二项展开式中系数最大的项(1)求二项式系数最大的项,根据二项式系数的性质,n 为奇数时,中间两项的二项式系数最大,n 为偶数时,中间一项的二项式系数最大. (2)求展开式中系数最大的项与求二项式系数最大的项是不同的,需根据各项系数的正、负变化情况进行判断.一般采用列不等式、解不等式的方法求解.(3)系数最大的项不一定是二项式系数最大的项,只有当二项式系数与各项系数相等时,二者才一致.[A 基础达标]1.若(x 3+1x2)n (n ∈N *)的展开式中只有第6项系数最大,则该展开式中的常数项为( )A .210B .252C .462D .10解析:选A.由于展开式中只有第6项的系数最大,且其系数等于其二项式系数,所以展开式项数为11,从而n =10,于是得其常数项为C 610=210. 2.已知(x +33x)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A .4 B .5 C .6D .7解析:选C.令x =1,各项系数和为4n,二项式系数和为2n,故有4n2n =64,所以n =6.3.已知(a -x )5=a 0+a 1x +a 2x 2+…+a 5x 5,若a 2=80,则a 0+a 1+a 2+…+a 5=( ) A .32 B .1 C .-243D .1或-243解析:选B.展开式的通项为T r +1=(-1)r C r5·a 5-r·x r,令r =2,则a 2=(-1)2C 25·a 3=80,故(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,得a 0+a 1+…+a 5=1. 4.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( ) A .45 B .55 C .70D .80解析:选C.因为(1+2)5=C 05(2)0+C 15(2)1+C 25(2)2+C 35(2)3+C 45(2)4+C 55(2)5=1+52+20+202+20+42=41+292, 由已知可得41+292=a +b 2, 所以a +b =41+29=70.5.设(1+x +x 2)n=a 0+a 1x +a 2x 2+…+a 2n x 2n,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB.3n-12 C .2n +1D.3n+12解析:选D.令x =1得3n=a 0+a 1+a 2+…+a 2n -1+a 2n .① 令x =-1得1=a 0-a 1+a 2-…-a 2n -1+a 2n .② ①+②得3n+1=2(a 0+a 2+…+a 2n ), 所以a 0+a 2+…+a 2n =3n+12.故选D.6.在⎝⎛⎭⎪⎫3x -2x n的二项式中,所有项的二项式系数之和为256,则常数项等于________.解析:依题设,得2n=256,解得n =8. 通项C r8·x8-r 3·⎝ ⎛⎭⎪⎫-2x r=C r 8(-2)r·x 8-4r 3,令8-4r 3=0,得r =2.故常数项为C 28(-2)2=112.答案:1127.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 解析:设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,所以 a =3. 答案:38.(x 2+1)(x -2)9=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a 11(x -1)11,则a 1+a 2+a 3+…+a 11的值为________. 解析:令x =1,得a 0=-2. 令x =2,得a 0+a 1+a 2+…+a 11=0.所以a 1+a 2+a 3+…+a 11=2. 答案:29.已知(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10. (1)求a 1+a 2+…+a 10;(2)求(a 0+a 2+a 4+a 6+a 8+a 10)2-(a 1+a 3+a 5+a 7+a 9)2. 解:(1)令f (x )=(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10, 则a 0=f (0)=25=32, 又a 0+a 1+…+a 10=f (1)=0, 故a 1+a 2+…+a 10=-32.(2)(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+a 2+…+a 10)(a 0-a 1+a 2-a 3+…+a 10)=f (1)f (-1)=0. 10.已知(x +m x)n展开式的二项式系数之和为256. (1)求n ;(2)若展开式中常数项为358,求m 的值;(3)若(x +m )n展开式中系数最大项只有第6项和第7项,求m 的取值情况. 解:(1)二项式系数之和为2n=256,可得n =8. (2)设常数项为第r +1项,则T r +1=C r 8x8-r (m x)r =C r 8m r x 8-2r, 故8-2r =0,即r =4,则C 48m 4=358,解得m =±12.(3)易知m >0,设第r +1项系数最大.则⎩⎪⎨⎪⎧C r 8m r≥C r -18m r -1C r 8m r ≥C r +18mr +1, 化简可得8m -1m +1≤r ≤9m m +1.由于只有第6项和第7项系数最大, 所以⎩⎪⎨⎪⎧4<8m -1m +1≤5,6≤9m m +1<7.即⎩⎪⎨⎪⎧54<m ≤2,2≤m <72.所以m 只能等于2.[B 能力提升]11.若(1-2x )2 017=a 0+a 1x +…+a 2 017x2 017(x ∈R),则a 12+a 222+…+a 2 01722 017的值为( )A .2B .0C .-2D .-1解析:选D.(1-2x )2 017=a 0+a 1x +…+a 2 017x2 017,令x =12,则(1-2×12)2 017=a 0+a 12+a 222+…+a 2 01722 017=0,其中a 0=1,所以a 12+a 222+…+a 2 01722 017=-1.12.(2018·合肥模拟)487被7除的余数为a (0≤a <7),则⎝ ⎛⎭⎪⎫x -a x 26的展开式中x -3的系数为( ) A .4 320 B .-4 320 C .20D .-20解析:选B.因为487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,所以487被7除的余数为6,所以a =6.所以⎝ ⎛⎭⎪⎫x -6x 26的展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r,令6-3r =-3,得r =3,所以⎝ ⎛⎭⎪⎫x -6x 26的展开式中x -3的系数为C 36·(-6)3=-4 320.13.已知(x 23+3x 2)n的展开式中,各项系数的和比它的二项式系数的和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解:(1)令x =1,则展开式中各项系数的和为(1+3)n =22n,又展开式中二项式系数的和为2n,所以22n-2n=992,解得n =5,所以展开式共6项,二项式系数最大的项为第三、四两项, 所以T 3=C 25(x 23)3(3x 2)2=90x 6,T 4=C 35(x 23)2(3x 2)3=270x 223.(2)设展开式中第r +1项系数最大, 则T r +1=C r5(x 23)5-r(3x 2)r =3r C r5x10+4r 3,所以⎩⎪⎨⎪⎧3r C r 5≥3r -1C r -15,3r C r 5≥3r +1C r +15⇒72≤r ≤92,又r ∈N,所以r =4.即展开式中第5项系数最大,T 5=C 45(x 23)(3x 2)4=405263.14.(选做题)在杨辉三角中,除每行的两端数值外,每一数值都是它左上角和右上角两个数值之和,杨辉三角开头几行如图所示.(1)利用杨辉三角展开(1-x )6;(2)在杨辉三角中哪一行会出现相邻的三个数,它们的比是3∶4∶5?解:(1)根据杨辉三角的规律“每行两端都是1,其余每个数都等于它肩上的两个数的和”,可写出第6行的二项式系数为1,6,15,20,15,6,1,所以(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6.令a =1,b =-x ,得(1-x )6=1-6x +15x 2-20x 3+15x 4-6x 5+x 6.(2)设在第n 行出现的三个相邻的数的比是3∶4∶5,并设这三个数分别是C k -1n ,C kn ,C k +1n ,则有⎩⎪⎨⎪⎧34=C k -1nC k n,45=Ck n Ck +1n,所以⎩⎪⎨⎪⎧34=n !(k -1)!(n +1-k )!×k !(n -k )!n !,45=n !k !(n -k )!×(k +1)!(n -1-k )!n !,所以⎩⎪⎨⎪⎧34=kn +1-k ,45=k +1n -k,即⎩⎪⎨⎪⎧3n -7k =-3,4n -9k =5,所以⎩⎪⎨⎪⎧n =62,k =27,即在第62行会出现C 2662∶C 2762∶C 2862=3∶4∶5.。
1 二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。
杨辉三角我们首先从一个二次多项式(a+b) 2 的展开式来探讨。
由上式得出:(a+b) 2 2+2ab+b 2 =a此代数式的系数为:1 2 1则(a+b) 3 3+3a 2b+3ab 2+b 3 的展开式是什么呢?答案为:a由此可发现,此代数式的系数为:1 3 3 1但4似乎没有什么规律,所以让我们再来看看(a+b)的展开式。
展开式为:a 4+4a 3b+6a 2b2+4ab 3+b 4+4a 3b+6a 2b2+4ab 3+b 4 由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (11 0)1 1 (11 1)1 2 1 (11 2)1 3 3 1 (11 3)1 4 6 4 1 (11 4)1 5 10 10 5 1 (11 5)1 6 15 20 15 6 1 (11 6)杨辉三角形的系数分别为:1,(1,1 ),(1,2,1 ),(1,3,3,1 ),(1,4,6,4,1 )(1,5,10,10,5,1 ),(1,6,15,20,15,6,1 ),(1,7,21,35,35,21,7,1 )所以:(a+b) 7=a 7+7a 6 b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7。
由上式可以看出,(a+b) n 等于a 的次数依次下降n 、n-1 、n- 2? n -n ,b 的次数依次上升,0、1、2? n 次方。
系数是杨辉三角里的系数。
2 杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )相加得到的数是1,2,4,8,16,32,64,? 刚好是2 的0,1,2,3,4,5,6,? n 次幂,即杨辉三角第n 行中n 个数之和等于2 的n-1 次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7 行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2) 中第7 行之前的数字相加得1+2+3+4+5=15把斜行(3) 中第7 行之前的数字相加得1+3+6+10=20把斜行(4) 中第7 行之前的数字相加得1+4+10=15把斜行(5) 中第7 行之前的数字相加得1+5=6把斜行(6) 中第7 行之前的数字相加得1将上面得到的数字与杨辉三角中的第7 行中的数字对比,我们发现它们是完全相同的。
高中数学杨辉三角综合测试题(含答案)选修2-3 1.3.2 杨辉三角与二项式系数的性质一、选择题1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为()A.2n-1 B.2n-1C.2n+1-1 D.2n[答案] C[解析] 解法一:令x=1得,1+2+22+ (2)=1(2n+1-1)2-1=2n+1-1.解法二:令n=1,知各项系数和为3,排除A、B、D,选C. 2.(x-y)7的展开式中,系数绝对值最大的是()A.第4项 B.第4、5两项C.第5项 D.第3、4两项[答案] B[解析] (x-y)n的展开式,当n为偶数时,展开式共有n +1项,中间一项的二项式系数最大;当n为奇数时,展开式有n+1项,中间两项的二项式系数最大,而(x-y)7的展开式中,系数绝对值最大的是中间两项,即第4、5两项.3.假设x3+1x2n展开式中的第6项的系数最大,那么不含x的项等于()A.210 B.120C.461 D.416[答案] A[解析] 由得,第6项应为中间项,那么n=10.Tr+1=Cr10(x3)10-r1x2r=Cr10x30-5r.令30-5r=0,得r=6.T7=C610=210.4.(2022安徽6)设(1+x)8=a0+a1x+…+a8x8,那么a0,a1,…,a8中奇数的个数为()A.2 B.3C.4 D.5[答案] A[解析] ∵a0=a8=C08=1,a1=a7=C18=8,a2=a6=C28=28,a3=a5=C38=56,a4=C48=70,奇数的个数是2,应选A.5.设n为自然数,那么C0n2n-C1n2n-1+…+(-1)kCkn2n -k+…+(-1)nCnn=()A.2n B.0C.-1 D.1[答案] D[解析] 原式=(2-1)n=1,应选D.6.设A=37+C2735+C4733+C673,B=C1736+C3734+C5732+1,那么A-B=()A.128 B.129C.47 D.0[答案] A[解析] A-B=37-C1736+C2735-C3734+…-1=(3-1)7=128.7.x2+2x8的展开式中x4项的系数是()A.16 B.70C.560 D.1120[答案] D[解析] 考察二项式定理的展开式.设第r+1项含有x4,那么Tr+1=Cr8(x2)8-r(2x-1)r =Cr82rx16-3r,16-3r=4,即r=4,所以x4项的系数为C4824=1120. 8.(2022广东惠州)等差数列{an}的通项公式为an=3n-5,那么(1+x)5+(1+x)6+(1+x)7的展开式中含x4项的系数是该数列的()A.第9项 B.第10项C.第19项 D.第20项[答案] D[解析] ∵(1+x)5+(1+x)6+(1+x)7展开式中含x4项的系数是C4511+C4612+C4713=5+15+35=55,由3n-5=55得n=20,应选D.9.假设n为正奇数,那么7n+C1n7n-1+C2n7n-2+…+Cn-1n7被9除所得的余数是()A.0 B.2C.7 D.8[答案] C[解析] 原式=(7+1)n-Cnn=8n-1=(9-1)n-1=9n-C1n9n-1+C2n9n-2-…+Cn-1n9(-1)n-1+(-1)n-1,n为正奇数,(-1)n-1=-2=-9+7,那么余数为7. 10.(2022江西理,6)(2-x)8展开式中不含x4项的系数的和为()A.-1 B.0C.1 D.2[答案] B[解析] (2-x)8的通项式为Tr+1=Cr828-r(-x)r=(-1)r28-rCr8xr2,那么x4项的系数为1,展开式中所有项的系数之和为(2-1)8=1,故不含x4项的系数之和为0,应选B.二、填空题11.假设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022+a2022x2022(xR),那么(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=________.(用数字作答) [答案] 2021[解析] 令x=0,那么a0=1.令x=1,那么a0+a1+a2+…+a2022+a2022=(1-2)2022=-1.(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2022)+(a0+a2022)=2022a0+(a0+a1+a2+a3+…+a2022)=2022-1=2021.12.(2022北京11)假设x2+1x3n展开式的各项系数之和为32,那么n=________,其展开式中的常数项为________(用数字作答).[答案] 5 10[解析] 令x=1,得2n=32,得n=5,那么Tr+1=Cr5(x2)5-r1x3r=Cr5x10-5r,令10-5r=0,r=2.故常数项为T3=10.13.(2022全国Ⅱ理,14)假设x-ax9的展开式中x3的系数是-84,那么a=________.[答案] 1[解析] 由Tr+1=Cr9x9-r-axr=(-a)rCr9x9-2r得9-2r=3,得r=3,x3的系数为(-a)3C39=-84,解得a=1.14.将杨辉三角中的奇数换成1,偶数换成0,得到如下图的01三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n次全行的数都为1的是第______行;第61行中1的个数是______.[答案] 2n-1 32[解析] 用不完全归纳法,猜测得出.三、解答题15.设(3x-1)8=a8x8+a7x7+…+a1x+a0.求:(1)a8+a7+…+a1;(2)a8+a6+a4+a2+a0.[解析] 令x=0,得a0=1.(1)令x=1得(3-1)8=a8+a7+…+a1+a0,①a8+a7+…+a2+a1=28-a0=256-1=255.(2)令x=-1得(-3-1)8=a8-a7+a6-…-a1+a0.②①+②得28+48=2(a8+a6+a4+a2+a0),a8+a6+a4+a2+a0=12(28+48)=32 896.16.设(1-2x)2022=a0+a1x+a2x2+…+a2022x2022(xR).(1)求a0+a1+a2+…+a2022的值.(2)求a1+a3+a5+…+a2021的值.(3)求|a0|+|a1|+|a2|+…+|a2022|的值.[分析] 分析题意令x=1求(1)式的值令x=-1求(2)式的值令x=-1求(3)式的值[解析] (1)令x=1,得:a0+a1+a2+…+a2022=(-1)2022=1①(2)令x=-1,得:a0-a1+a2-…+a2022=32022②与①式联立,①-②得:2(a1+a3+…+a2021)=1-32022,a1+a3+a5+…+a2021=1-320222.(3)∵Tr+1=Cr202212022-r(-2x)r=(-1)rCr2022(2x)r,a2k-10(kN*),a2k0(kN*).|a0|+|a1|+|a2|+|a3|+…+|a2022|=a0-a1+a2-a3+…+a2022,所以令x=-1得:a0-a1+a2-a3+…+a2022=32022. 17.证明:(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n. [证明] ∵(1+x)n(1+x)n=(1+x)2n,(C0n+C1nx+C2nx2+…+Cnnxn)(C0n+C1nx+C2nx2+…+Cnnxn)=(1+x)2n,而Cn2n是(1+x)2n的展开式中xn的系数,由多项式的恒等定理得C0nCnn+C1nCn-1n+…+CnnC0n=Cn2n.∵Cmn=Cn-mn(0n),(C0n)2+(C1n)2+(C2n)2+…+(Cnn)2=Cn2n.18.求(1+x-2x2)5展开式中含x4的项.[分析] 由题目可获取以下主要信息:①n=5;②三项的和与差.解答此题可把三项看成两项,利用通项公式求解,也可先分解因式,根据多项式相乘的法那么,由组合数的定义求解.[解析] 方法一:(1+x-2x2)5=[1+(x-2x2)]5,那么Tr+1=Cr5(x-2x2)r(x-2x2)r展开式中第k+1项为Tk+1=Ckrxr-k(-2x2)k=(-2)kCkrxx+k.令r+k=4,那么k=4-r.∵0r,05,且k、rN,r=2k=2或r=3k=1或r=4k=0.展开式中含x4的项为[C25(-2)2C22+C35(-2)C13+C45(-2)0C04]x4=-15x4.方法二:(1+x-2x2)5=(1-x)5(1+2x)5,那么展开式中含x4的项为C05C45(2x)4+C15(-x)C35(2x)3+C25(-x)2C25(2x)2+C35(-x)3C15(2x)+C45(-x)4C05(2x)0=-15x4.。