2017步步高大一轮复习讲义数学29资料
- 格式:docx
- 大小:1.67 MB
- 文档页数:13
第2章第三讲考点一元素与物质的关系1.答案 A解析CaO是离子化合物,不存在分子;而Si和SiO2都是由原子直接构成。
3.答案①⑧⑨⑩⑭⑮⑰⑲②③④⑤⑥⑦⑪⑫⑬⑯⑱考点二物质的分类题组一采用反例否定,准确辨析概念1.答案(1)×(2)√(3)×(4)√(5)×(6)×(7)×(8)×(9)×(10)×(11)×题组二把握分类标准,理清物质类别2.答案 C解析A项,Na2CO3属于盐,NaOH属于碱,SO2属于酸性氧化物;B项,NO属于不成盐氧化物;D 项,Na2O2不是碱性氧化物。
3.答案 C解析A项,光导纤维属于酸性氧化物,是新型无机非金属材料;B项,纯碱不是碱而是盐;C项,氧化物是化合物,化合物都是纯净物;D项,H2SO4是含氧酸,但含氧酸不一定都是强酸。
考点三物质的性质与变化深度思考1.答案(1)×(2)×(3)×(4)√(5)×(6)√(7)×(8)×(9)×(10)×2.答案①⑤⑧3.答案①②③④题组一准确判断物质变化1.答案 C 解析C项,包含了CaCO3+CO2+H2O===Ca(HCO3)2,Ca(HCO3)2=====△CaCO3↓+CO2↑+H2O两个化学过程。
2.答案 D解析剩饭变馊、自行车生锈、牛奶变酸均发生了氧化还原反应。
题组二判断物质性质,理解物质转化3.答案 A解析A项,液氨汽化时吸收大量热,能使环境温度急剧降低,可作制冷剂,正确;B项,石英的成分是SiO2,SiO2能与氢氟酸反应:SiO2+4HF===SiF4↑+2H2O,错误;C项,氯气与水反应生成酸,不能用碱性干燥剂干燥,错误;D项,AlCl3是共价化合物,加热升华不导电,错误。
4.答案 B解析A项,当A为Mg、B为Cl2、C为H2时,符合题给信息和框图转化,A、B、C中没有氧元素,A项错误;B项,碱至少有三种元素组成,B项正确;C项,常温下,B、C均为气体单质,E溶液不可能为硫酸,C项错误;D项,金属在常温下不为气体,D项错误。
1第1章第1讲考点一 物质的量 摩尔质量题组一 有关分子(或特定组合)中微粒数的计算 1.答案 ①>⑥>⑤>③>②>④ 2.(1)答案 1.2 <解析 n (SO 2-4)=3n [Al 2(SO 4)3]=3×0.4 mol =1.2mol ,0.4 mol Al 2(SO 4)3中含有0.8 mol Al 3+,由于在溶液中Al 3+水解,故Al 3+的物质的量小于0.8 mol 。
(2答案 小于 小于题组二 通过n =m M =NN A ,突破质量与微粒数目之间的换算 3.答案 C解析 ③中摩尔质量的单位错误;由于该氯原子的质量是a g ,故a g 该氯原子所含的电子数为17,④错。
4.答案 0.33N A 0.26解析 晶体的摩尔质量约为122 g·mol -1,n =12.2 g122 g·mol -1=0.1 mol ,故氧原子数目=0.1×(2+1.3)N A =0.33N A ,n (H)=0.1 mol ×1.3×2=0.26 mol 。
考点二 气体摩尔体积 阿伏加德罗定律 深度思考 2.答案 ③解析 ①、②中,1摩尔水或水蒸气的质量都为m水N A ;③中,水蒸气分子间间距比分子直径大的多,仅由题给条件不能确定1摩尔水蒸气的体积。
题组一 有关“n =V V m =m M =NN A ”的应用1.答案 D解析 解法一 公式法:a g 双原子分子的物质的量=pN A mol ,双原子分子的摩尔质量=a g pN Amol =aN A pg·mol -1, 所以b g 气体在标准状况下的体积为 b g aN A pg·mol -1×22.4 L·mol -1=22.4pbaN AL 。
解法二 比例法: 同种气体其分子数与质量成正比,设b g 气体的分子数为N a g ~ p b g ~ N 则:N =bp a ,双原子分子的物质的量为pbaN A,所以b g 该气体在标准状况下的体积为22.4pbaN AL 。
步步高大一轮复习讲义数学答案【篇一:2017步步高大一轮复习讲义数学4.6】a+b.【思考辨析】(3)在非直角三角形中有:tana+tanb+tanc=tanatanbtanc.( √ )a.633 3b.-d.-333答案 ba.112答案 d答案 8x1-2sin2 2解析∵f(x)=2tanx1sinx22cosx24=2tanx, sinxsinxcosxsin2x题型一三角函数式的化简与求值______________________________________________________ ________.126答案 (1)cos2x 28和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.1a.- 81 161b.- 16185a. 443答案 (1)a (2)d18题型二三角函数的求角问题答案 (1)c (2)b思维升华通过求角的某种三角函数值来求角,在选取函数时,有以下原则:【篇二:步步高大一轮复习讲义数学理科a版【答案解析】2013版】lass=txt>要点梳理1.(1)确定性互异性无序性 (2)属于不属于∈ ? (3)列举法描述法图示法区间法 (5)有限集无限集空集2.(1)a?b b?a ? ? ? 2n 2n-1 2n-23.(1){x|x∈a,且x∈b}{x|x∈u,且x?a} 基础自测 1.{2,4} 2.{x|0x1} 3.(2,3) 4.?10,1,-2??5.b例1 解 (1)当a+2=1,即a=-1时,(a+1)2=0,a2+3a+3=1与a+2相同,∴不符合题意.当(a+1)2=1,即a=0或a=-2时,①a=0符合要求. ②a=-2时,a2+3a+3=1与(a+1)2相同,不符合题意. 当a2+3a+3=1,即a=-2或a=-1.①当a=-2时,a2+3a+3=(a+1)2=1,不符合题意. ②当a=-1时,a2+3a+3=a+2=1,不符合题意. 综上所述,a=0,∴2013a=1.(2) ∵当x=0时,x=x2-x=x3-3x=0,∴它不一定能表示一个有三个元素的集合. ?2要使它表示一个有三个元素的集合,则应有?x≠x-x,?x2-x≠x3-3x,??x≠x3-3x.∴x≠0且x≠2且x≠-1且x≠-2时,{x,x2-x,x3-3x}能表示一个有三个元素的集合. 变式训练 1 0或98例2 解 a中不等式的解集应分三种情况讨论:①若a=0,则a=r;②若a0,则a=x|41??14?a≤x-a?;③若a0,则a=??x|-ax≤a?.(1)当a=0时,若a?b,此种情况不存在.41当a0时,若a?b,如图:,则??a-2-1a≤1,a2a0或a-8,∴?a0或2又a0,∴a-8.11当a0时,若a?b,如图:,则?-?a2,∴?2或a0?4a≥2或a0.a2??a≥又∵a0,∴a≥2.综上知,当a?b时,a-8或a≥2. (2)当a=0时,显然b?a;4?当a0时,若b?a,如图:,则??a-12,∴?0??1a-8≤a?1?2a0.又∵a0,∴12a0.-1当a0时,若b?a,如图:,则??a1240a≤2a2,∴0a≤2.又∵a0,∴0a≤2.综上知,当b?a时,-12a≤2.(3)当且仅当a、b两个集合互相包含时,a=b,由(1)、(2)知,a=2.变式训练 2 4 例3 1或2变式训练3 解 (1)∵a={x112x≤3},当a=-4时,b={x|-2x2},∴a∩b={x|2x2},a∪b={x|-2x≤3}.(2)?a={x|x1r2或x3},当(?ra)∩b=b时,b??ra,即a∩b=?.①当b=?,即a≥0时,满足b??ra;②当b≠?,即a0时, b={x|--ax-a},要使b??11ra,需-a≤2,解得-4≤a0.综上可得,实数a的取值范围是a≥-14例4 a变式训练 4 6 {0,1,2,3} 课时规范训练 a组1.c2.c3.a4.-1或25.{(0,1),(-1,2)}6.187.解由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴m-2=0,∴m=?m+2≥3.2.(2)?rb={x|xm-2或xm+2},∵a??rb,∴m-23或m+2-1,即m5或m-3.8.解∵m={y|y=x2,x∈r}={y|y≥0},n={y|y=3sin x,x∈r}={y|-3≤y≤3},∴m-n={y|y3},n-m={y|-3≤y0},∴m*n=(m-n)∪(n-m)={y|y3}∪{y|-3≤y0}={y|y3或-3≤y0}. b组1.c2.b3.a4.a5.a≤06.-37.(-∞,-3) x-58.解由≤0,∴-1x≤5,∴a={x|-1x≤5}.x+1要点梳理1.判断真假判断为真判断为假2.(1)若q,则p 若綈p,则綈q 若綈q,则綈p,(2)逆命题否命题逆否命题 (3)①相同②没有3.(1)充分条件必要条件 (2)充要条件(2)易知,綈p:x+y=8,綈q:x=2且y=6,显然綈q?綈p,但綈p 綈q,即綈q是綈p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.(3)显然x∈a∪b不一定有x∈b,但x∈b一定有x∈a∪b,∴p是q的必要不充分条件.(4)条件p:x=1且y=2,条件q:x=1或y=2,∴p?q但q p,故p是q的充分不必要条件. 变式训练2 ①④例3 证明充分性:1当a=0时,方程为2x+1=0,其根为x=-,方程有一个负根,符合题意.21a意.-2且??a0?1a,故方程有两个负根,符合题意.综上知:当a≤1时,方程ax2+2x+1=0至少有一个负根. 必要性:若方程ax2+2x+1=0至少有一个负根. 当a=0时,方程为2x+1=0符合题意.当a≠0时,方程ax2+2x+1=0应有一正一负根或两个负根.则1-2a0或?a,解得a0或0a≤1.1a0综上知:若方程ax2+2x+1=0至少有一负根,则a≤1.故关于x的方程ax2+2x+1=0至少有一个负根的充要条件是a≤1.变式训练3 证明充分性:当q=-1时,a1=s1=p+q=p-1.当n≥2时,an=sn-sn-1=pn-1(p-1),当n=1时也成立,于是an+1pn?p-1a?p-?p-1?=p(n∈n*n)即数列{an}为等比数列.必要性:当n=1时,a1=s1=p+q,当n≥2时,an=sn-sn-1=pn-1(p-1).∵p≠0,p≠1,∴an+1pn?p-1?a=-?p-1?p.np∵{aaan+1n}为等比数列,a=p,又s2=a1+a2=p2+q,1an∴ap2-p=p(p-1),∴p?p-1?2=p+q=p,即p-1=p+q.∴q=-1.综上所述,q=-1是数列{an}为等比数列的充要条件.课时规范训练 a组1.d2.b3.a4.充分不必要5.①③④6.[3,8)7.解由题意p:-2≤x-3≤2,∴1≤x≤5,∴綈p:x1或x5,q:m -1≤x≤m+1,∴綈q:xm-1或xm+1.又∵綈p是綈q的充分而不必要条件,∴m-1≥1,∴2≤m?m+1≤5.≤4.8.解设a={x|p}={x|x2-4ax+3a20,a0}={x|3axa,a0},b={x|q}={x|x2-x-6≤0或x2+2x-80}={x|x2-x-6≤0}∪{x|x2+2x-80} ={x|-2≤x≤3}∪{x|x-4或x2}={x|x-4或x≥-2}.∵綈p是綈q的必要不充分条件,∴綈q?綈p,且綈pd?/綈q,则{x|綈q}?{x|綈p},而{x|綈q}=?rb={x|-4≤x-2},{x|綈p}=?ra ={x|x≤3a或x≥a,a0},∴{x|-4≤x-2}?{x|x≤3a或x≥a,a0},则???3a≥-2,??a≤-4, a0 或a0.综上,可得-23≤a0或a≤-4.b组1.a2.c3.b4.?3?4,1?∪(1,+∞) 5.[1,2) 6.①③②④ 7.3或4 ?8.解 (1)当a=1?x|x-2509=??x|2x5?x,b=x|4?2时,a=??=??x|1x9?, ?x-22x-1??24?2∴?b=??19??95?u?x|x≤2x≥4??,∴(?ub)∩a=??x|4x2??.(2)∵a2+2a,∴b={x|axa2+2}.①当3a+12,即a13a={x|2x3a+1}.∵p是q的充分条件,∴a?b.∴a≤213-5??3a+1≤a2+2,即3a≤2②当3a+1=2,即a=13a=?,不符合题意;③当3a+12,即a13a={x|3a+1x2},由a?b得a≤3a+1112,∴?a+2≥22a3.综上所述,实数a的取值范围是?11?-123∪??3-?3,2.1.3 简单的逻辑联结词、全称量词与存在量词要点梳理1.(1)或且非 (2)真假假真假假真真假真假真真 2.(3)? ?(4)①含有全称量词②含有存在量词基础自测变式训练1 解 (1)p∨q:1是素数或是方程x2+2x-3=0的根.真命题.p∧q:1既是素数又是方程x2+2x-3=0的根.假命题.【篇三:2017步步高大一轮复习讲义数学2.6】果ax=n(a0且a≠1),那么数x叫做以a为底n的对数,记作x=logan,其中数的底数,n叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a0且a≠1,m0,n0,那么①loga(mn) m②logan③logamnn∈r);n④logammn=am(m,n∈r,且m≠0).m(2)对数的性质①alogan=n;②logaan=n(a0且a≠1).(3)对数的重要公式logan①换底公式:logbn= (a,b均大于零且不等于1);logab②logab=13.对数函数的图象与性质4.反函数指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线对称.【思考辨析】31-x11?,函数图象只在(6)对数函数y=logax(a0且a≠1)的图象过定点(1,0),且过点(a,1),a?第一、四象限.( √ )解析易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,21+x又f(x)=ln=ln?-1x-1?,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故1-x选a.112.已知a=3,b=log1,c=log2( )23312a.abc c.cba 答案 ab.bca d.bac11解析 a=31,0b=log1=log321,c=log2=-log230,故abc,故选a.2333.函数f(x)=lg(|x|-1)的大致图象是()答案 b解析由函数f(x)=lg(|x|-1)的定义域为(-∞,-1)∪(1,+∞),值域为r.又当x1时,函数单调递增,所以只有选项b正确.34.(教材改编)若loga1(a0,且a≠1),则实数a的取值范围是( ) 430,? a.??4?30,?∪(1,+∞)c.??4?答案 c3解析当0a1时,logaaa=1,433∴0aa1时,logalogaa=1,∴a1.443-b.(1,+∞) 3?d.??4,1?答案43 3-a解析 2a+2=2log43+2-log43=2log2log=3+4=3. 3题型一对数式的运算11例1 (1)设2a=5b=m,且+=2,则m等于( )aba..10c.20d.100 5+lg20的值是.答案 (1)a (2)1解析 (1)∵2a=5b=m,∴a=log2m,b=log5m, 1111∴+logm2+logm5=logm10=2. ablog2mlog5m∴m=(2)原式=lg100=lg10=1.思维升华在对数运算中,要熟练掌握对数的定义,灵活使用对数的运算性质、换底公式和对数恒等式对式子进行恒等变形,多个对数式要尽量先化成同底的形式再进行运算.(1).log64(2)已知loga2=m,loga3=n,则a2mn=.+答案 (1)1 (2)12 解析 (1)原式63=log641-2log63+?log63?2+?1-log63??1+log63?=log641-2log63+?log63?2+1-?log63?2=log64=2?1-log63?log66-log63log2==1.2log62log62log62+题型二对数函数的图象及应用例2 (1)函数y=2log4(1-x)的图象大致是( )1(2)当0x4xlogax,则a的取值范围是( )2a.?0,2? 2?b.?2?21c.(1,答案 (1)c (2)bd.(,2)解析 (1)函数y=2log4(1-x)的定义域为(-∞,1),排除a、b;又函数y=2log4(1-x)在定义域内单调递减,排除d.选c.(2)方法一构造函数f(x)=4x和g(x)=logax,当a1时不满足条件,当0a1时,画出两个10,?上的图象,函数在??2?1?1?可知f??2g?2?,122即2log,则a,所以a的取值范围为,1?.22?2?1方法二∵0x≤,∴14x≤2,2∴logax4x1,1∴0a1,排除选项c,d;取a211x,则有42=2,log1=1, 2221显然4xlogax不成立,排除选项a.思维升华应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)已知lga+lgb=0,则函数f(x)=ax与函数g(x)=-logbx的图象可能是( )。
1.几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b (a、b为常数,a≠0)反比例函数模型f(x)=kx+b (k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1) 对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1) 幂函数模型f(x)=ax n+b (a,b为常数,a≠0)函数性质y=a(a>1)x y=log a x(a>1) y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.(√)(2)幂函数增长比直线增长更快.(×)(3)不存在x0,使ax0<xn0<log a x0.(×)(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.(√)(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×)(6)指数函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.(√)1.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x 0.500.99 2.01 3.98y -0.990.010.98 2.00则对x,yA.y=2x B.y=x2-1C.y=2x-2 D.y=log2x答案 D解析根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.2.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间函数关系的图象,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()答案 D解析 由图可知,张大爷开始匀速离家直线行走,中间一段离家距离不变,说明在以家为圆心的圆周上运动,最后匀速回家.故选D.3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1答案 D解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( )A .3B .4C .6D .12 答案 A解析 设隔墙的长度为x (0<x <6),矩形面积为y ,则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx+b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 小时. 答案 24解析 由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3·e b=⎝⎛⎭⎫123·e b =18×192=24.题型一用函数图象刻画变化过程例1(1)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()(2)(2015·日照模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()答案(1)D(2)B解析(1)y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C;又因为小王在乙地休息10分钟,故排除B,故选D.(2)由运输效率(单位时间的运输量)逐步提高得,曲线上的点的切线斜率应该逐渐增大,故函数的图象应一直是下凹的,故选B.思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是()答案 D解析 依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知,选D.题型二 已知函数模型的实际问题例2 (2015·山东实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧ a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位. 思维升华 求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.某般空公司规定,乘飞机所携带行李的质量(kg)与其运费(元)由如图的一次函数图象确定,那么乘客可免费携带行李的质量最大为 kg.答案 19解析 由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.题型三 构造函数模型的实际问题命题点1 构建二次函数模型例3 某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元 D .43.025万元答案 C解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32. 因为x ∈[0,16],且x ∈N ,所以当x =10或11时,总利润取得最大值43万元. 命题点2 构建指数函数、对数函数模型例4 (1)世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%(2)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A .略有盈利 B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况 答案 (1)C (2)B解析 (1)设每年人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40 lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x ≈1.017,所以x ≈1.7%.(2)设该股民购进这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损. 命题点3 构建分段函数模型例5 某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了 km. 答案 9解析 设出租车行驶x km 时,付费y 元, 则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.(1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg /mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过 小时才能开车.(精确到1小时)(2)某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为( ) A .10 B .11 C .13 D .21 答案 (1)5 (2)A解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x ≤0.09,∴0.75x ≤0.3,x ≥log 0.750.3≈4.19.∴x 最小为5. (2)设该企业需要更新设备的年数为x , 设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1), 所以x 年的平均费用为y =100+0.5x +x (x +1)x=x +100x+1.5,由基本不等式得y =x +100x+1.5≥2x ·100x+1.5 =21.5,当且仅当x =100x,即x =10时取等号,所以选A.2.函数应用问题典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x -40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润. 思维点拨 根据题意,要利用分段函数求最大利润.列出解析式后,比较二次函数和“对勾”函数的最值的结论. 规范解答解 (1)当0<x ≤40时,W =xR (x )-(16x +40) =-6x 2+384x -40,[2分] 当x >40时,W =xR (x )-(16x +40) =-40 000x-16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.[4分](2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;[6分]②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x=16x ,即x =50∈(40,+∞)时,取等号, 所以W 取最大值为5 760.[10分] 综合①②知,当x =32时,W 取得最大值6 104万元.[12分]解函数应用题的一般程序第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:解模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.温馨提醒 (1)此类问题的关键是正确理解题意,建立适当的函数模型.(2)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.[方法与技巧]1.认真分析题意,合理选择数学模型是解决应用问题的基础.2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.3.解函数应用题的五个步骤:①审题;②建模;③解模;④还原;⑤反思. [失误与防范]1.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A组专项基础训练(时间:20分钟)1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x 45678910y 15171921232527A.一次函数模型B.幂函数模型C.指数函数模型D.对数函数模型答案 A解析根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元答案 D解析设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108. 3.(2015·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()答案 A解析前3年年产量的增长速度越来越快,说明呈高速增长,只有A,C图象符合要求,而后3年年产量保持不变,故选A.4.将出货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为( )A .85元B .90元C .95元D .100元 答案 C解析 设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].∴当x =95时,y 最大.5.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10 答案 A解析 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x 100,令104·(100-10x )·70·x 100≥112×104,解得2≤x ≤8.故x 的最小值为2. 6.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为 m.答案 20解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.7.(2015·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过 min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a , ∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝⎛⎭⎫x 2+8x (x >0).则当年广告费投入 万元时,该公司的年利润最大.答案 4解析 由题意得L =512-⎝⎛⎭⎫x 2+8x =432-12⎝⎛⎭⎫x -4x 2(x >0).当x -4x=0,即x =4时,L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大.B 组 专项能力提升(时间:10分钟)9.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )A .19B .20C .21D .22答案 C解析 操作次数为n 时的浓度为⎝⎛⎭⎫910n +1,由⎝⎛⎭⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,∴n ≥21.10.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14 答案 A解析 由三角形相似得24-y24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180, ∴当y =12时,S 有最大值,此时x =15.11.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t表示时间,单位:小时,y 表示病毒个数),则k = ,经过5小时,1个病毒能繁殖为 个.答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e12k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024. 12.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.y 关于x 的解析式为y =⎩⎪⎨⎪⎧ 0,0<x ≤800,5%(x -800),800<x ≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为 元.答案 1 350解析 若x =1 300元,则y =5%(1 300-800)=25(元)<30(元),因此x >1 300.∴由10%(x -1 300)+25=30,得x =1 350(元).。