《函数的基本性质》知识点总结(一)
- 格式:pdf
- 大小:621.21 KB
- 文档页数:4
《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xy x x x f x f ; ②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xy x x x f x f ; ⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。
函数的基本性质函数的基本性质一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。
定义:(略)定理1: 那么上是增函数;上是减函数.定理2:(导数法确定单调区间) 若 ,那么上是增函数; 上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数 和 ,如果函数 在区间 上具有单调性,当 时 ,且函数 在区间 上也具有单调性,则复合函数 在区间 具有单调性。
3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数 和 ,若它们的定义域分别为 和 ,且 :(1)当 和 具有相同的增减性时,① 的增减性与 相同,② 、 、 的增减性不能确定;(2)当 和 具有相异的增减性时,我们假设 为增函数, 为减函数,那么:① 的增减性不能确定;② 、 、 为增函数, 为减函数。
4.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。
二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。
1.函数 的图象的对称性(自身):定理1: 函数 的图象关于直 对称特殊的有:①函数 的图象关于直线 对称 。
②函数 的图象关于 轴对称(奇函数) 。
③函数 是偶函数 关于 对称。
定理2:函数 的图象关于点 对称特殊的有:① 函数 的图象关于点 对称 。
② 函数 的图象关于原点对称(奇函数) 。
③ 函数 是奇函数 关于点 对称。
定理3:(性质)①若函数y=f (x)的图像有两条铅直对称轴x=a 和x=b(a 不等于b),那么f(x)为周期函数且2|a-b|是它的一个周期。
②若函数y=f (x)的图像有一个对称中心M(m.n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。
函数的基本性质知识点总结一、函数的定义和表示方式1.定义:函数是一种特殊关系,它将一个集合中的每个元素与另一个集合中的唯一元素相对应。
2.表示方式:函数可以用图表、解析式、关系式等方式表示。
二、函数的定义域、值域和对应关系1.定义域:函数的定义域是指能使函数有意义的输入值的集合。
2.值域:函数的值域是指函数的所有可能的输出值的集合。
3.对应关系:对于函数中的每个输入值,都有一个唯一的输出值与之对应。
三、函数的图象和图像1.图象:函数的图象是函数在平面直角坐标系中的表示,其所有的点坐标满足函数的对应关系。
2.图像:函数的图像是函数的图象在控制显示器或打印机上的可视化表现。
四、函数的性质1.单调性:函数可以是递增的(单调递增)或递减的(单调递减)。
2.奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。
3.周期性:函数可以是周期函数,即函数在一定区间内具有重复的规律。
4.奇点和间断点:函数的奇点是指函数在定义域内的特定点,其函数值不存在或趋于无穷;间断点是指函数在特定点不连续。
五、函数的极限与连续性1.极限:函数的极限是指当自变量趋于一些值时,函数值的趋向或趋近的特性。
2.连续性:函数在定义域内的所有点都连续,当且仅当函数在这些点的极限存在且等于这些点的函数值。
六、函数的导数与微分1.导数:函数的导数描述了函数在其中一点处的变化率。
导数表示为函数的斜率或函数的变化速率。
2.微分:函数的微分可以理解为函数在其中一点处的无穷小增量。
七、函数的极值与最值1.极值:函数在极值点处的函数值称为极大值或极小值。
极大值是函数在该点附近所有函数值中最大的值,极小值是函数在该点附近所有函数值中最小的值。
2.最值:函数的最大值和最小值称为函数的最值。
八、函数的反函数1.反函数:如果函数f的定义域与值域互换,且对于f的每一个输出值,存在唯一的输入值与之对应,则这个函数称为f的反函数。
以上是函数的基本性质的总结,函数理论是数学中的基础内容,也是其他学科中的重要概念。
函数的基本性质知识点总结1.函数的定义:函数是一种数学对象,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
函数通常以符号表示,例如f(x)。
2.定义域:函数的定义域是指函数能够接受的自变量的值的集合。
它是函数能够有效进行计算的自变量的范围。
通常用符号表示为D(f)。
3.值域:函数的值域是指函数在定义域上所有可能的函数值的集合。
它是因变量的取值范围。
通常用符号表示为R(f)。
4.图像:函数的图像是指由函数的所有有序对(x,f(x))组成的点的集合。
可以通过将自变量的取值代入函数的表达式来确定函数的图像。
5.奇偶性:函数的奇偶性指函数在坐标系中的对称性。
一个函数被称为奇函数,如果对于定义域上的任何x值,-x处的函数值等于x处的相反数。
一个函数被称为偶函数,如果对于定义域上的任何x值,-x处的函数值等于x处的函数值。
6.单调性:函数的单调性指函数在定义域上的增减趋势。
一个函数被称为严格递增函数,如果对于定义域上的任意两个x值,f(x1)<f(x2)。
一个函数被称为严格递减函数,如果对于定义域上的任意两个x值,f(x1)>f(x2)。
7.周期性:函数的周期性指函数在定义域上以一定的周期重复。
一个函数被称为周期函数,如果存在一个正整数T,对于定义域上的任意x值,有f(x+T)=f(x)。
8.连续性:函数的连续性指函数在定义域上的无间断性。
一个函数在点x=c处连续,如果当x趋近于c时,f(x)趋近于f(c)。
一个函数在整个定义域上连续,如果它在每个点都连续。
9.可导性:函数的可导性指函数在一些点上的导数是否存在。
函数f(x)在点x=c处可导,如果当x趋近于c时,f(x)的斜率存在,并且等于c处的导数。
10.极值:函数的极值指函数在定义域上的最大值和最小值。
一个局部最大值是指函数在一些区间上的最大值,而不一定是整个定义域上的最大值。
一个局部最小值是指函数在一些区间上的最小值,而不一定是整个定义域上的最小值。
函数的基本性质基础知识:1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f (-x )与f (x )的关系;③作出相应结论:若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y 轴成轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)。
函数性质知识点总结优秀4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数性质知识点总结优秀4篇函数是高中数学中比较重要的课程内容,也贯穿了整个高中数学的学习。
《函数的基本性质》知识点总结《函数的基本性质》知识点总结「篇一」《函数的基本性质》知识点总结基础知识:1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。
如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。
注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系;③作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点成中心对称;一个函数是偶函数的充要条件是它的图象关于y轴成轴对称;②设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)f(x2)),那么就说f(x)在区间D上是增函数(减函数);注意:①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)。
(2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
《函数的基本性质》知识总结大全第一篇:《函数的基本性质》知识总结大全《函数的基本性质》知识总结1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。
⑴函数单调性的定义一般地,设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I 上是单调增函数,I称为内的______两个值x1,x2,当x1x1,x2,当x1∈M,当x1<x2时,有f(x1)-f(x2)<0f(x1)-f(x2)∆y⇔(x1-x2)⋅[f(x1)-f(x2)]>0⇔>0⇔>0; x1-x2∆x②f(x)在区间M上是减函数⇔∀x1,x2∈M,当x1<x2时,有f(x1)-f(x2)>0f(x1)-f(x2)∆y<0⇔<0;⇔(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2∆x①f(x)在区间M上是增函数⇔∀x1,x2⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等.注意:①定义法(取值——作差——变形——定号——结论):设x1,x2∈[a,b]且x1≠x2,那么f(x1)-f(x2)>0⇔f(x)在区间[a,b]上是增函数;x1-x2f(x1)-f(x2)<0⇔f(x)在区间[a,b]上是减函数。
(x1-x2)⋅[f(x1)-f(x2)]<0⇔x1-x2(x1-x2)⋅[f(x1)-f(x2)]>0⇔②导数法(选修):在反之,f(x)区间(a,b)内处处可导,若总有f'(x)>0(f'(x)<0),则f(x)在区间(a,b)内为增(减)函数;f(x)在区间(a,b)内为增(减)函数,且处处可导,则f'(x)≥0(f'(x)≤0)。
请注意两者之间的区别,可以“数形结合法”研究。
函数及其基本性质知识点总结(总7页)-本页仅作为预览文档封面,使用时请删除本页-〖〗函数及其表示【】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()a b,f x的定义域为[,]其复合函数[()]≤≤解出.f g x的定义域应由不等式()a g x b⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集o合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性函数的性 质定义图象 判定方法函数的单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)x y f(x )1f(x )2o (1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)y x o x x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性 函数的性 质定义图象 判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.高考《函数及其基本性质》考点解析考点一:函数定义域1、函数y = )A. {}1,1-B. ( -1 , 1 )C. [ -1 , 1 ]D. (-∞ ,-1 )∪( 1 ,+∞ ) 2、1y x=+ 考点二:函数值域1、①31y x =+ , x ∈{1,2 ,3,4,5 } ( 观察法 )②246y x x =-+ ,x ∈[)1,5 ( 配方法 :形如2y ax bx c =++ )③2y x =换元法:形如y ax b =+) ④1x y x =+ ( 分离常数法:形如cx d y ax b+=+ ) ⑤221y x x =+ ( 判别式法:形如21112222a xb xc y a x b x c ++=++ ) 2、设函数2()2()g x x x R =-∈,222,()()2,()x x x g x f x x x x g x ⎧++<⎪=⎨-->⎪⎩,则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦考点三:分段函数1、已知函数()510320x x x x f x ⎧+ ≥⎪⎨-+ <⎪⎩=,求f (1)+f (1-)的值2、已知函数()()2122111f x x x x x x f x ⎧+ , ≤-⎪⎪+ , -<<⎨⎪2-4 , ≥ ⎪⎩= ,求f [f (4-)]的值 3、已知函数232,1,(),1,x x f x x ax x +<⎧=⎨+≥⎩若((0))4f f a =,则实数a = .4、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__考点四:函数单调性(最值)、函数奇偶性1. 如果函数2()2(1)2f x x a x =+-+在区间(,4]-∞上是减函数,那么实数a 的取值范围是 .2. 如果二次函数2()1)5f x x a x =--+(在区间1(,1)2上是增函数,(2)f 的取值范围 .3. (2008全国Ⅱ)函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.二次函数21y x mx =-+是偶函数,则函数的增区间为 ( ) A .[0,)+∞ B .(,0]-∞ C .[1,)+∞ D .[1,)-+∞ 5. 下列函数中, 是奇函数且在(0,)+∞上为增函数的是 ( )A .3y x x =-B . 1y x x =+C . 1y x x=- D . 3y x =- 6.(2007年宁夏)设函数()()()xa x x x f ++=1为奇函数,则实数=a .7.若函数1,0(),0x x f x ax b x -≥⎧=⎨+<⎩为偶函数,则()f a b += .8.已知偶函数()f x 在(0,)+∞上为增函数,且(2)0f =,解不等式:(23)0f x ->.9. 设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则()0f x <的解集为( )A .(1,)+∞B . (,1)-∞-(0,1)C . (,1)-∞-D . (1,)+∞(,1)-∞-10.设偶函数()f x 在),0[+∞上为减函数,则不等式()(21)f x f x >+的解集是 11.函数2()f x x x=+在区间[2,3]上的最大值为 .二次函数问题、函数图像问题等考点均渗透在以上考点中。