人教版九年级锐角三角函数全章教案
- 格式:doc
- 大小:363.50 KB
- 文档页数:19
人教版九年级锐角三角函数全章教案【教案名称】:人教版九年级锐角三角函数全章教案【教学目标】:1. 了解锐角三角函数的概念和基本性质;2. 掌握锐角三角函数的定义和计算方法;3. 能够应用锐角三角函数解决实际问题;4. 培养学生的数学思维和解决问题的能力。
【教学内容】:本教案共包含以下内容:1. 锐角三角函数的引入和概念介绍;2. 正弦函数、余弦函数和正切函数的定义和计算方法;3. 锐角三角函数的性质和关系;4. 锐角三角函数的应用。
【教学步骤】:一、引入和概念介绍1. 通过引导学生观察直角三角形中的角度和边长关系,引入锐角三角函数的概念;2. 介绍正弦函数、余弦函数和正切函数的定义和符号表示;3. 通过实例演示和练习,让学生掌握锐角三角函数的计算方法。
二、正弦函数、余弦函数和正切函数的性质和关系1. 通过图像和表格展示正弦函数、余弦函数和正切函数的周期性、奇偶性和单调性;2. 引导学生观察和总结正弦函数、余弦函数和正切函数之间的关系,如正弦函数与余弦函数的关系、正切函数与正弦函数的关系等;3. 练习题目让学生巩固和应用正弦函数、余弦函数和正切函数的性质和关系。
三、锐角三角函数的应用1. 通过实际问题引导学生应用锐角三角函数解决实际问题,如测量高楼的高度、计算斜坡的坡度等;2. 练习题目和实例让学生掌握如何运用锐角三角函数解决实际问题。
【教学重点】:1. 锐角三角函数的定义和计算方法;2. 正弦函数、余弦函数和正切函数的性质和关系;3. 锐角三角函数的应用。
【教学扩展】:1. 引导学生探究其他三角函数(割函数、余割函数和余切函数)的定义和性质;2. 给予学生更多的应用题目和实例,提高学生运用锐角三角函数解决实际问题的能力;3. 鼓励学生自主学习和探索,拓宽数学知识的广度和深度。
【教学评估】:1. 课堂练习:通过课堂练习,检查学生对锐角三角函数的理解和掌握程度;2. 作业布置:布置相关的作业题目,让学生巩固和应用所学知识;3. 个人表现评估:评估学生在课堂讨论、问题解答和实际应用中的表现。
人教版九年级锐角三角函数全章教案教学目标:本课程旨在通过探究锐角三角函数,使学生掌握当锐角固定时,对边与斜边的比值是固定值的概念,并能正确进行计算。
同时,通过研究锐角三角函数,培养学生观察、比较、分析、概括等逻辑思维能力,以及独立思考、勇于创新的精神和良好的研究惯。
教学重点:理解认识正弦(sinA)概念,掌握当锐角固定时,对边与斜边的比值是固定值的概念。
教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。
教学过程:一、复旧知、引入新课老师通过一个实际问题的引入,让学生了解锐角三角函数的实际应用。
例如,测量旗杆高度的问题。
二、探索新知通过问题引入的方式,让学生探索锐角三角函数的概念和应用。
活动一:问题的引入老师通过引入实际问题,让学生思考如何应用锐角三角函数来解决问题。
例如,在绿化荒山的问题中,通过计算斜坡与水平面所成角的度数和出水口的高度,求解需要准备多长的水管。
活动二:问题的探索老师通过问题的探索,让学生比较、分析并得出结论。
例如,在任意画一个Rt△ABC,使∠C=90o,∠A=45o的问题中,让学生计算∠A的对边与斜边的比,从而得出结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于2.活动三:问题的拓展老师通过问题的拓展,让学生进一步探索锐角三角函数的应用。
例如,在∠A取其他一定度数的锐角时,让学生比较、分析并得出结论:对任意锐角,它的对边与斜边的比值是固定值。
三、总结归纳老师通过总结归纳,让学生掌握锐角三角函数的概念和应用,以及对边与斜边的比值是固定值的事实。
同时,让学生反思并总结研究锐角三角函数的方法和策略,以便更好地掌握和应用相关知识。
四、作业布置老师布置相关作业,让学生巩固和拓展所学知识。
例如,让学生通过计算和实际应用,进一步掌握锐角三角函数的概念和应用。
同时,让学生思考如何将锐角三角函数与其他数学知识和实际问题相结合,更好地应用所学知识。
第二十八章锐角三角函数28.1 锐角三角函数(1)教学目标:1、知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
能根据正弦概念正确进行计算。
2、过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.3、情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.教学难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦341米10米二、探索新知 【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB 根据“在直角三角形中,30o 角所对的边等于斜边的一半”,即可得AB=2BC=70m.即需要准备70m 长的水管结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。
第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学"相似三角形""勾股定理"等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA 、 cosA 、 tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦二、探索新知、分类应用【活动一】问题的引入【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。
现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21 【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比ABBC,能得到什么结论?(学生思考)结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于22。
【问题三】一般地,当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠A=∠A`=α,那么与有什么关系结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比也是一个固定值。
34110【活动二】认识正弦如图,在Rt △ABC 中,∠A 、∠B 、∠C 所对的边分别记为a 、b 、c 。
在Rt △ABC 中,∠C=90°,我们把锐角A 的_____与________的比叫做∠A 的正弦。
记作_______。
sinA =________________(举例说明:若a=1,c=3,则sinA=________) 【注意】:1、sinA 不是 sin 与A 的乘积,而是一个整体;2、正弦的三种表示方式:sinA 、sin56°、sin ∠DEF3、sinA 是线段之间的一个比值;sinA 没有单位。
提问:∠B 的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?【活动三】正弦简单应用 例1 如课本图28.1-5,在Rt △ABC 中,∠C=90°,求sinA 和sinB 的值.(1)34CB A(2)1353CB A三、总结消化、整理笔记在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比都是一个固定值. 在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
四、书写作业、巩固提高练习:做课本第77页练习.五、教学后记ABCD28.1 锐角三角函数(2)第二课时教学目标:知识与技能:1、了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA•表示直角三角形中两边的比.2、逐步培养学生观察、比较、分析、概括的思维能力. 过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.理解余弦、正切的概念.2.难点:熟练运用锐角三角函数的概念进行有关计算.教学过程:一、复习旧知、引入新课【复习】1、口述正弦的定义2、(1)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3. 则sin ∠BAC= ;sin ∠ADC= .(2)﹙2006成都﹚如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( ) A .53B .23C .255D .52二、探索新知、分类应用【活动一】余弦、正切的定义一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值? 如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o ,∠B=∠B`=α,那么与有什么关系?结论:在直角三角形中,当锐角B 的度数一定时,不管三角形的大小如何,∠B 的邻边与斜边的比也是一个固定值。
如图,在Rt△ABC 中,∠C=90o,把锐角B 的______与________的比叫做∠B 的余弦,记作___________即把∠A的_______与__________的比叫做∠A的正切.记作________,即锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.【活动二】余弦、正切简单应用教师解释课本第78页例2题意:如课本图28.1-7,在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.6CBA三、总结消化、整理笔记在直角三角形中,当锐角A的大小确定时,∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,把∠A的对边与斜边的比叫做∠A的正切,记作tanA.四、书写作业、巩固提高学生做课本第78页练习1、2、3题.分层作业五、教学后记28.1 锐角三角函数(3)第三课时教学目标:知识与技能:1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.2、使学生了解同一个锐角正弦与余弦之间的关系3、使学生了解正切与正弦、余弦的关系4、使学生了解三角函数值随锐角的变化而变化的情况 过程与方法:1.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.2.锐角正弦、余弦和正切与正弦、余弦之间的关系,了解锐角三角函数的内涵。
情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯,让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.重难点、关键:1.重点:三个锐角三角函数间几个简单关系.2.难点:能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系.教学过程:一、复习旧知、引入新课【复习】叫学生结合直角三角形说出正弦、余弦、正切的定义二、探索新知、分类应用【活动一】锐角三角函数间几个简单关系讨论:1、从定义可以看出sin A 与cos B 有什么关系?sin B 与cos A 呢? 满足这种关系的A ∠与B ∠又是什么关系呢?2、利用定义及勾股定理你还能发现sin A 与cos A 的关系吗?3、再试试看tan A 与sin A 和cos A 存在特殊关系吗?4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?【活动二】题型分析(1)判断题:i 对于任意锐角α,都有0<sin α<1和0<cos α<1 ( ) ii 对于任意锐角α1,α2,如果α1<α2,那么cos α1<cos α2 ( ) iii 如果sin α1<sin α2,那么锐角α1<锐角α2I ( ) iv 如果cos α1<cos α2,那么锐角α1>锐角α2 ( ) (2)在Rt △ABC 中,下列式子中不一定成立的是______A .sinA =sinB B .cosA =sinBC .sinA =cosBD .sin(A+B)=sinC((3)390,sin .cos ,sin tan 5ABC C A A B A ∠==中,求和的值 (4)sin 272°+sin 218°的值是( ).A .1B .0C .12D .2三、总结消化、整理笔记1、一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系:sin A =cos B 或sin B =cos A2、使学生了解同一个锐角正弦与余弦之间的关系:22sin cos 1A A +=3、使学生了解正切与正弦、余弦的关系sin tan cos AA A=4、使学生了解三角函数值随锐角的变化而变化的情况四、书写作业、巩固提高分层作业五、教学后记28.1 锐角三角函数(4)第四课时教学目标:知识与技能:1.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30°、45°、60°角的三角函数的运算式.过程与方法:知道30°,45°,60°角的三角函数值,并且进行运算. 情感态度与价值观:让学生经历观察、操作等过程,知道特殊三角函数值,从事锐角三角函数基本性质的探索活动,进一步发展空间观察,增强审美意识.重难点、关键:1.重点:熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式.2.难点:30°、45°、60°角的三角函数值的推导过程.教学过程:一、复习旧知、引入新课【引入】还记得我们推导正弦关系的时候所到结论吗?即01sin 302=,0sin 45=你还能推导出0sin 60的值及30°、45°、60°角的其它三角函数值吗?二、探索新知、分类应用【活动一】30°、45°、60°角的三角函数值【探索】1.让学生画30°45°60°的直角三角形,分别求sia 30° cos45° tan60° 归纳结果例1 求下列各式的值:(1)cos 260°+sin 260°. (2)cos 45sin 45︒︒-tan45°.例2.(1)如图(1),在Rt△ABC中,∠C=90,AB=6,BC=3,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB3a.【活动三】提高知识1、tan45°·sin60°-4sin30°·cos45°6·tan30°2、已知sinA,sinB是方程4x2-2mx+m-1=0的两个实根,且∠A,∠B是直角三角形的两个锐角,求:(1)m的值;(2)∠A与∠B的度数.三、总结消化、整理笔记本节课应掌握:30°、45°、60°角的三角函数值,并且进行计算;四、书写作业、巩固提高(一)巩固练习:课本80练习1、2(二)分层作业五、教学后记28.2 教直角三角形(1)第一课时教学目标:知识与技能:1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯. 过程与方法:通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力..情感态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.重难点、关键:1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.教学过程:一、复习旧知、引入新课【引入】我们一起来解决关于比萨斜塔问题。